Skip to main content
Log in

Discrete element simulation of dynamic behaviour of partially saturated sand

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

The discrete element method (DEM) together with the finite element method (FEM) in LS-DYNA was employed to investigate the dynamic behaviour of sand under impact loading. In this approach, the partially saturated sand was modelled in DEM with capillary forces being taken into account through an implicit capillary contact model, while other solids were simulated using FEM. A slump test was first performed with dry sand to calibrate the contact parameters in DEM. Low velocity impact tests were then conducted to investigate the effect of water saturation on the shape and height of sand piles after impact, and to validate the simulations. It was found in the experiments that an increasing water saturation (in the range between 10 and 30 %) affected the height of sand pile for a given drop height due to an increasing cohesion between particles. The simulations captured the experimental ejecta patterns and sand pile height. Finally, a low confinement split Hopkinson pressure bar test from earlier literature was modelled; the DEM–FEM simulations could reproduce the trends of experimentally observed stress–strain curves of partially saturated sand under high strain rate loading, indicating that it was feasible to model dynamic behaviour of dry and wet sand with low saturation (<20 %) in LS-DYNA; however, a number of questions remain open about the effect of grain shape, grain crushing and viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Shahbodagh-Khan, B., Khalili, N., Alipour Esgandani, G.: A numerical model for nonlinear large deformation dynamic analysis of unsaturated porous media including hydraulic hysteresis. Comput. Geomech. 69, 411–423 (2015)

    Article  Google Scholar 

  • Omidvar, M., Iskander, M., Bless, S.: Stress–strain behavior of sand at high strain rates. Int. J. Impact Eng 49, 192–213 (2012)

    Article  Google Scholar 

  • Martin, B.E., Chen, W., Song, B., Akers, S.A.: Moisture effects on the high strain-rate behavior of sand. Int. J. Impact Eng 41, 786–798 (2009)

    Google Scholar 

  • Saleh, M., Edwards, L.: Evaluation of soil and fluid structure interaction in blast modelling of the flying plate test. Comput. Struct. 151, 96–114 (2015)

    Article  Google Scholar 

  • Mitarai, N., Nori, F.: Wet granular materials. Adv. Phys. 55, 1–45 (2006)

    Article  Google Scholar 

  • Veyera, G.E.: Uniaxial Stress–Strain Behavior of Unsaturated Soils at High Strain Rates. Wright Laboratory, Flight Dynamics Directorate, Tyndall AFB (1994)

    Google Scholar 

  • Horn, H.M., Deere, D.U.: Frictional Characteristics of Minerals. Géotechnique 12, 319–335 (1962)

    Article  Google Scholar 

  • Takita, H., Sumita, I.: Low-velocity impact cratering experiments in a wet sand target. Phys. Rev. E 88, 022203 (2013)

    Article  Google Scholar 

  • Park, S., Uth, T., Fleck, N.A., Wadley, H.N.G., Deshpande, V.S.: Sand column impact onto a Kolsky pressure bar. Int. J. Impact Eng 62, 229–242 (2013)

    Article  Google Scholar 

  • Kong, X., Fang, Q., Hong, J., Wu, H.: Numerical study of the wake separation and reattachment effect on the trajectory of a hard projectile. Int. J. Prot. Struct. 5, 97–118 (2014)

    Article  Google Scholar 

  • Li, Q.M., Flores-Johnson, E.A.: Hard projectile penetration and trajectory stability. Int. J. Impact Eng 38, 815–823 (2011)

    Article  Google Scholar 

  • Omidvar, M., Iskander, M., Bless, S.: Response of granular media to rapid penetration. Int. J. Impact Eng 66, 60–82 (2014)

    Article  Google Scholar 

  • Børvik, T., Olovsson, L., Hanssen, A.G., Dharmasena, K.P., Hansson, H., Wadley, H.N.G.: A discrete particle approach to simulate the combined effect of blast and sand impact loading of steel plates. J. Mech. Phys. Solids 59, 940–958 (2011)

    Article  Google Scholar 

  • Borg, J.P., Morrissey, M.P., Perich, C.A., Vogler, T.J., Chhabildas, L.C.: In situ velocity and stress characterization of a projectile penetrating a sand target: experimental measurements and continuum simulations. Int. J. Impact Eng 51, 23–35 (2013)

    Article  Google Scholar 

  • Alonso-Marroquín, F., Herrmann, H.J.: The incremental response of soils: an investigation using a discrete-element model. J. Eng. Math. 52, 11–34 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Alonso-Marroquín, F., Wang, Y.: An efficient algorithm for granular dynamics simulations with complex-shaped objects. Granul. Matter 11, 317–329 (2009)

    Article  MATH  Google Scholar 

  • Gan, Y., Kamlah, M.: Discrete element modelling of pebble beds: with application to uniaxial compression tests of ceramic breeder pebble beds. J. Mech. Phys. Solids 58, 129–144 (2010)

    Article  MATH  Google Scholar 

  • Alonso-Marroquín, F., Ramírez-Gómez, Á., González-Montellano, C., Balaam, N., Hanaor, D.H., Flores-Johnson, E.A., Gan, Y., Chen, S., Shen, L.: Experimental and numerical determination of mechanical properties of polygonal wood particles and their flow analysis in silos. Granul. Matter 15, 811–826 (2013)

    Article  Google Scholar 

  • Dwivedi, S.K., Teeter, R.D., Felice, C.W., Gupta, Y.M.: Two dimensional mesoscale simulations of projectile instability during penetration in dry sand. J. Appl. Phys. 104, 083502 (2008)

    Article  Google Scholar 

  • Oñate, E., Rojek, J.: Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems. Comput. Methods Appl. Mech. Eng. 193, 3087–3128 (2004)

    Article  MATH  Google Scholar 

  • Scholtès, L., Chareyre, B., Nicot, F., Darve, F.: Discrete modelling of capillary mechanisms in multi-phase granular media. CMES Comput. Model. Eng. Sci. 52, 297–318 (2009)

    MATH  Google Scholar 

  • Grima, A., Wypych, P.: Development and validation of calibration methods for discrete element modelling. Granul. Matter 13, 127–132 (2011)

    Article  Google Scholar 

  • Gröger, T., Tüzün, U., Heyes, D.M.: Modelling and measuring of cohesion in wet granular materials. Powder Technol. 133, 203–215 (2003)

    Article  Google Scholar 

  • Gan, Y., Maggi, F., Buscarnera, G., Einav, I.: A particle-water based model for water retention hysteresis. Geotech. Lett. 3, 152–161 (2013)

    Article  Google Scholar 

  • Elperin, T., Golshtein, E.: Comparison of different models for tangential forces using the particle dynamics method. Phys. A 242, 332–340 (1997)

    Article  Google Scholar 

  • Flores-Johnson, E.A., Li, Q.M.: Low velocity impact on polymeric foams. J. Cell. Plast. 47, 45–63 (2011)

    Article  Google Scholar 

  • Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  • Hallquist, J.O.: LS-DYNA Keyword User’s Manual, Version R8.0. Livermore Software Technology Corporation, California (2015)

    Google Scholar 

  • Jensen, A., Fraser, K., Laird, G.: Improving the precision of discrete element simulations through calibration models. In: 13th International LS-DYNA Conference, Detroit (2014)

  • Pandey, P., Song, Y., Turton, R.: Chapter 8 modelling of pan-coating processes for pharmaceutical dosage forms. In: Salman, M.J.H.A.D., Seville, J.P.K. (eds.) Handbook of Powder Technology, pp. 377–416. Elsevier Science B.V, Amsterdam (2007)

    Google Scholar 

  • Wriggers, P.: Computational Contact Mechanics, 2nd edn. Berlin, Springer (2006)

    Book  MATH  Google Scholar 

  • Karajan, N., Han, Z., Teng, H., Wang, J.: On the parameter estimation for the discrete-element method in LS-DYNA. In: 13th International LS-DYNA Conference, Detroit (2014)

  • Karajan, N., Lisner, E., Han, Z., Teng, H., Wang, J.: Particles as discrete elements in LS-DYNA: interaction with themselves as well as deformable or rigid structures. In: 11th LS-DYNA Forum, Ulm (2012)

  • Karajan, N., Asperberg, D., Teng, H., Han, Z., Wang, J.: Workshop on the discrete-element method in LS-DYNA. In: 10th European LS-DYNA Conference, Würzburg (2015)

  • Coetzee, C.J., Nel, R.G.: Calibration of discrete element properties and the modelling of packed rock beds. Powder Technol. 264, 332–342 (2014)

    Article  Google Scholar 

  • Coetzee, C.J., Els, D.N.J.: Calibration of discrete element parameters and the modelling of silo discharge and bucket filling. Comput. Electron. Agric. 65, 198–212 (2009)

    Article  Google Scholar 

  • Grger, T., Katterfeld, A.: On the numerical calibration of discrete element models for the simulation of bulk solids. In: Marquardt, W., Pantelides, C. (eds.) Computer Aided Chemical Engineering, pp. 533–538. Elsevier, Amsterdam (2006)

    Google Scholar 

  • Rabinovich, Y.I., Esayanur, M.S., Moudgil, B.M.: Capillary forces between two spheres with a fixed volume liquid bridge: theory and experiment. Langmuir 21, 10992–10997 (2005)

    Article  Google Scholar 

  • Lian, G., Thornton, C., Adams, M.J.: A theoretical study of the liquid bridge forces between two rigid spherical bodies. J. Colloid Interface Sci. 161, 138–147 (1993)

    Article  Google Scholar 

  • Rietema, K.: The Dynamics of Fine Powders. Elsevier, Amsterdam (1991)

    Book  Google Scholar 

  • Uesugi, M., Kishida, H.: Influential factors of friction between steel and dry sands. Soils Found. 26, 33–46 (1986)

    Article  Google Scholar 

  • Kabir, M.E., Song, B., Martin, B.E., Chen, W.: Compressive behavior of fine sand. Sandia National Laboratories, New Mexico (2010)

    Google Scholar 

  • Song, B., Chen, W., Luk, V.: Impact compressive response of dry sand. Mech. Mater. 41, 777–785 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Australian Research Council Discovery Projects (DP140100945), and the National Natural Science Foundation of China (No. 11232003). This research was undertaken with the assistance of resources from the National Computational Infrastructure (NCI), which is supported by the Australian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luming Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores-Johnson, E.A., Wang, S., Maggi, F. et al. Discrete element simulation of dynamic behaviour of partially saturated sand. Int J Mech Mater Des 12, 495–507 (2016). https://doi.org/10.1007/s10999-016-9350-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-016-9350-5

Keywords

Navigation