Skip to main content
Log in

Electromagnetic heating for adhesive melting in CFRTP joining: study, analysis, and testing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Induction heating of thermoplastic composites is a suitable and promising technique, due to the very short heating time and the possibility of generating the heat at the interface between the adherends compared with other heating technologies, i.e. owen heating or hot melt gun manual deposition. The aim of this work is to study the electromagnetic induction heating in adhesive bonding of thermoplastic matrix composite materials, when a hot-melt thermoplastic adhesive, Prodas, is used. A numerical model for studying the effect of the process parameters, such as current intensity, maximum temperature and holding time at maximum temperature, has been developed. Experimental tests validated the results of the numerical model; also, the mechanical properties of the adhesive joints were evaluated by short beam shear test and single lap shear tests to define the values of technological parameters allowing for the better joint strength. Moreover, ANOVA analysis was employed to evaluate the most significant parameter which affected the mechanical properties, highlighting the optimum process parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Hallal A, Elmarakbi A, Shaito A, El-Hage H (2013) Overview of composite materials and their automotive applications. In: Advanced composite materials for automotive applications. Wiley, Chichester, pp 1–28

    Google Scholar 

  2. Ageorges C, Ye L, Hou M (2001) Advances in fusion bonding techniques for joining thermoplastic matrix composites: a review. Compos Part A Appl Sci Manuf 32:839–857. https://doi.org/10.1016/S1359-835X(00)00166-4

    Article  Google Scholar 

  3. Teti R (2002) Machining of composite materials. CIRP Ann 51:611–634. https://doi.org/10.1016/S0007-8506(07)61703-X

    Article  Google Scholar 

  4. Sheikh-Ahmad JY, Almaskari F, Hafeez F (2019) Thermal aspects in machining CFRPs: effect of cutter type and cutting parameters. Int J Adv Manuf Technol 100:2569–2582. https://doi.org/10.1007/s00170-018-2881-1

    Article  Google Scholar 

  5. Skeist I (2012) Handbook of adhesives. Springer Science & Business Media, Berlin

    Google Scholar 

  6. Leone C, Genna S (2018) Effects of surface laser treatment on direct co-bonding strength of CFRP laminates. Compos Struct 194:240–251. https://doi.org/10.1016/J.COMPSTRUCT.2018.03.096

    Article  Google Scholar 

  7. Pizzorni M, Lertora E, Gambaro C, Mandolfino C, Salerno M, Prato M (2019) Low-pressure plasma treatment of CFRP substrates for epoxy-adhesive bonding: an investigation of the effect of various process gases. Int J Adv Manuf Technol 102:3021–3035. https://doi.org/10.1007/s00170-019-03350-9

    Article  Google Scholar 

  8. Haimbaugh RE (2015) Practical induction heat treating. ASM International, Cleveland

    Google Scholar 

  9. Sergio Lupi, Michele Forzan, Aleksandr Aliferov (2015) Induction and Direct Resistance Heating

  10. Miller AK, Chang C, Payne A, Gur M, AP EM (1990) The nature of induction heating in graphite–fiber, polymer–matrix composite materials. SAMPE J 26:37–54

    Google Scholar 

  11. Fink BK, McCullough RL, Gillespie JW (2004) A local theory of heating in cross-ply carbon fiber thermoplastic composites by magnetic induction. Polym Eng Sci 32:357–369. https://doi.org/10.1002/pen.760320509

    Article  Google Scholar 

  12. Yarlagadda S, Kim HJ, Gillespie JW et al (2002) A study on the induction heating of conductive fiber reinforced composites. J Compos Mater 36:401–421. https://doi.org/10.1177/0021998302036004171

    Article  Google Scholar 

  13. Sánchez Cebrián A, Zogg M, Ermanni P (2013) Methodology for optimization of the curing cycle of paste adhesives. Int J Adhes Adhes 40:112–119. https://doi.org/10.1016/j.ijadhadh.2012.09.002

    Article  Google Scholar 

  14. Severijns C, de Freitas ST, Poulis JA (2017) Susceptor-assisted induction curing behaviour of a two component epoxy paste adhesive for aerospace applications. Int J Adhes Adhes 75:155–164. https://doi.org/10.1016/j.ijadhadh.2017.03.005

    Article  Google Scholar 

  15. Gouin O’Shaughnessey P, Dubé M, Fernandez Villegas I (2016) Modeling and experimental investigation of induction welding of thermoplastic composites and comparison with other welding processes. J Compos Mater. https://doi.org/10.1177/0021998315614991

    Article  Google Scholar 

  16. Chadegani A, Batra RC (2011) Analysis of adhesive-bonded single-lap joint with an interfacial crack and a void. Int J Adhes Adhes 31:455–465. https://doi.org/10.1016/J.IJADHADH.2011.02.006

    Article  Google Scholar 

  17. Luo Q, Tong L (2009) Analytical solutions for nonlinear analysis of composite single-lap adhesive joints. Int J Adhes Adhes 29:144–154. https://doi.org/10.1016/J.IJADHADH.2008.01.007

    Article  MathSciNet  Google Scholar 

  18. da Silva LFM, das Neves PJC, Adams RD, Spelt JK (2009) Analytical models of adhesively bonded joints—part I: literature survey. Int J Adhes Adhes 29:319–330. https://doi.org/10.1016/J.IJADHADH.2008.06.005

    Article  Google Scholar 

  19. de Castro J, Keller T (2008) Ductile double-lap joints from brittle GFRP laminates and ductile adhesives, part I: experimental investigation. Compos Part B Eng 39:271–281. https://doi.org/10.1016/J.COMPOSITESB.2007.02.015

    Article  Google Scholar 

  20. Reis PNB, Ferreira JAM, Antunes F (2011) Effect of adherend’s rigidity on the shear strength of single lap adhesive joints. Int J Adhes Adhes 31:193–201. https://doi.org/10.1016/J.IJADHADH.2010.12.003

    Article  Google Scholar 

  21. Pahr DH, Rammerstorfer FG, Rosenkranz P et al (2002) A study of short-beam-shear and double-lap-shear specimens of glass fabric/epoxy composites. Compos Part B Eng 33:125–132. https://doi.org/10.1016/S1359-8368(01)00063-4

    Article  Google Scholar 

  22. Precision WS (2011) Standard test method for short-beam strength of polymer matrix composite materials. Annu B ASTM Stand 00:1–8. https://doi.org/10.1520/D2344

    Article  Google Scholar 

  23. Specimen J, Results T (2005) ASTM D5868 standard test method for lap shear adhesion for fiber reinforced plastic ( FRP ). Reproduction 01:4–5. https://doi.org/10.1520/D5868-01R14.2

    Article  Google Scholar 

  24. Ahmed TJ, Stavrov D, Bersee HEN, Beukers A (2006) Induction welding of thermoplastic composites—an overview. Compos Part A Appl Sci Manuf 37:1638–1651. https://doi.org/10.1016/J.COMPOSITESA.2005.10.009

    Article  Google Scholar 

  25. Li X, Strieder W (2009) Emissivity of high-temperature fiber composites. Ind Eng Chem Res 48:2236–2244. https://doi.org/10.1021/ie8008583

    Article  Google Scholar 

  26. Kranjc M, Zupanic A, Miklavcic D, Jarm T (2010) Numerical analysis and thermographic investigation of induction heating. Int J Heat Mass Transf 53:3585–3591. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2010.04.030

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to kindly acknowledge Dr. Francesco Galise of CRF (Fiat Research Center), Pomigliano d’Arco, Naples, Italy, for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Nele.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nele, L., Palmieri, B. Electromagnetic heating for adhesive melting in CFRTP joining: study, analysis, and testing. Int J Adv Manuf Technol 106, 5317–5331 (2020). https://doi.org/10.1007/s00170-019-04910-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04910-9

Keywords

Navigation