Skip to main content
Log in

Low-pressure plasma treatment of CFRP substrates for epoxy-adhesive bonding: an investigation of the effect of various process gases

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This work reports a systematic and quantitative evaluation of the effects induced on the adhesive properties of carbon fiber reinforced polymer (CFRP) substrates by various vacuum cold-plasma treatments. In particular, surface activation of the CFRP substrates was performed using several combinations of exposure time, plasma power, and processing gas (air, O2, Ar and N2). By comparing these plasma treatments with conventional techniques of abrasion and peel ply, it was possible to substantially increase the performance of the adhesively bonded joints made by overlapping the CFRP substrates with a structural epoxy resin. On each differently treated surface, measurements of roughness and of wettability were performed, allowing the evaluation of the increase in surface energy after the plasma treatment. XPS analyses allowed the identification of the chemical state of the substrates and showed an in-depth functionalization of the outer layer of the CFRP material. The experimental results show that an engineered plasma treatment of the CFRP substrates allows one to modify the surface morphology and both wetting and chemical activation properties of the treated surfaces, resulting in an increased mechanical shear strength of the joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friedrich K, Almajid AA (2013) Manufacturing aspects of advanced polymer composites for automotive applications. Appl Compos Mater 20:107–128. https://doi.org/10.1007/s10443-012-9258-7

    Article  Google Scholar 

  2. AL-Zubaidy H, Zhao XL, Al-Mihaidi R (2011) Mechanical behaviour of normal modulus carbon fibre reinforced polymer (CFRP) and epoxy under impact tensile loads. Procedia Eng 10:2453–2458. https://doi.org/10.1016/j.proeng.2011.04.404

    Article  Google Scholar 

  3. Morioka K, Tomita Y, Takigawa K (2001) High-temperature fracture properties of CFRP composite for aerospace applications. Mater Sci Eng A 319–321:675–678. https://doi.org/10.1016/S0921-5093(01)01000-0

    Article  Google Scholar 

  4. Kumar SB, Sridhar I, Sivashanker S, Osiyemi SO, Bag A (2006) Tensile failure of adhesively bonded CFRP composite scarf joints. Mater Sci Eng B 132:113–120. https://doi.org/10.1016/j.mseb.2006.02.046

    Article  Google Scholar 

  5. Kanerva M, Saarela O (2013) The peel ply surface treatment for adhesive bonding of composites: a review. Int J Adhes Adhes 43. https://doi.org/10.1016/j.ijadhadh.2013.01.014

  6. Holtmannspötter J, Czarnecki JV, Wetzel M, Dolderer D, Eisenschink C (2013) The use of peel ply as a method to create reproduceable but contaminated surfaces for structural adhesive bonding of carbon Fiber reinforced plastics. J Adhes 89:96–110. https://doi.org/10.1080/00218464.2012.731828

    Article  Google Scholar 

  7. Schweizer M, Meinhard D, Ruck S, Riegel H, Knoblauch V (2017) Adhesive bonding of CFRP: a comparison of different surface pre-treatment strategies and their effect on the bonding shear strength. J Adhes Sci Technol 31:2581–2591. https://doi.org/10.1080/01694243.2017.1310695

    Article  Google Scholar 

  8. Davis M, Bond D (1999) Principles and practices of adhesive bonded structural joints and repairs. Int J Adhes Adhes 19:91–105. https://doi.org/10.1016/S0143-7496(98)00026-8

    Article  Google Scholar 

  9. Wegman RF, Van Twisk J (2013) Surface preparation techniques for adhesive bonding, 2nd edn. Elsevier, New York

    Google Scholar 

  10. Ebnesajjad S, Landrock AH (2014) Material surface preparation techniques. Adhes Technol Handb, pp 37–46. https://doi.org/10.1016/B978-0-8155-1533-3.50006-2

  11. Tang L, Kardos JL (1997) A review of methods for improving the interfacial adhesion between carbon fiber and polymer matrix. Polym Compos 18:100–113. https://doi.org/10.1002/pc.10265

    Article  Google Scholar 

  12. Montes-Morán MA, Martínez-Alonso A, Tascón JMD, Young RJ (2001) Effects of plasma oxidation on the surface and interfacial properties of ultra-high modulus carbon fibres. Compos A Appl Sci Manuf 32:361–371. https://doi.org/10.1016/S1359-835X(00)00109-3

    Article  Google Scholar 

  13. Tang S, Lu N, Wang JK, Ryu S-K, Choi H-S (2007) Novel effects of surface modification on activated carbon fibers using a low pressure plasma treatment. J Phys Chem C 111:1820–1829. https://doi.org/10.1021/jp065907j

    Article  Google Scholar 

  14. Shanahan MER, Bourges-Monnier C (1996) Effects of plasma treatment on the adhesion of an epoxy composite. Int J Adhes Adhes 16:129–135. https://doi.org/10.1016/0143-7496(95)00028-3

    Article  Google Scholar 

  15. Li R, Ye L, Mai Y (1997) Application of plasma technologies in fibre-reinforced polymer composites: a review of recent developments. Compos A Appl Sci Manuf 28:73–86. https://doi.org/10.1016/S1359-835X(96)00097-8

    Article  Google Scholar 

  16. Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Atmospheric pressure plasmas: a review. Spectrochim Acta B At Spectrosc 61:2–30. https://doi.org/10.1016/j.sab.2005.10.003

    Article  Google Scholar 

  17. D’Agostino R, Favia P, Oehr C, Wertheimer MR (2005) Low-temperature plasma processing of materials: past, present, and future. Plasma Process Polym 2:7–15. https://doi.org/10.1002/ppap.200400074

    Article  Google Scholar 

  18. Molitor P, Barron V, Young T (2001) Surface treatment of titanium for adhesive bonding to polymer composites: a review. Int J Adhes Adhes 21:129–136. https://doi.org/10.1016/S0143-7496(00)00044-0

    Article  Google Scholar 

  19. He P, Chen K, Yu B, Yue CY, Yang J (2013) Surface microstructures and epoxy bonded shear strength of Ti6Al4V alloy anodized at various temperatures. Compos Sci Technol 82:15–22. https://doi.org/10.1016/j.compscitech.2013.04.007

    Article  Google Scholar 

  20. Marín-Sánchez M, Conde A, García-Rubio M, Lavia A, García I (2016) Durability of titanium adhesive bonds with surface pretreatments based on alkaline anodisation. Int J Adhes Adhes 70:225–233. https://doi.org/10.1016/j.ijadhadh.2016.07.001

    Article  Google Scholar 

  21. Wu S (1973) Polar and nonpolar interactions in adhesion. J Adhes 5:39–55. https://doi.org/10.1080/00218467308078437

    Article  Google Scholar 

  22. Wu S (1971) Calculation of interfacial tension in polymer systems. J Polym Sci Part C Polym Symp 34:19–30. https://doi.org/10.1002/polc.5070340105

    Article  Google Scholar 

  23. Sakai H, Fujii T (1999) The dependence of the apparent contact angles on gravity. J Colloid Interface Sci 210:152–156. https://doi.org/10.1006/jcis.1998.5940

    Article  Google Scholar 

  24. Extrand CW, In Moon S (2010) When sessile drops are no longer small: transitions from spherical to fully flattened. Langmuir 26:11815–11822. https://doi.org/10.1021/la1005133

    Article  Google Scholar 

  25. Vesel A, Mozetic M (2017) New developments in surface functionalization of polymers using controlled plasma treatments. J Phys D Appl Phys 50:293001. https://doi.org/10.1088/1361-6463/aa748a

    Article  Google Scholar 

  26. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. https://doi.org/10.1002/sia.740030412

  27. Lee H, Ohsawa I, Takahashi J (2015) Effect of plasma surface treatment of recycled carbon fiber on carbon fiber-reinforced plastics (CFRP) interfacial properties. Appl Surf Sci 328:241–246. https://doi.org/10.1016/j.apsusc.2014.12.012

    Article  Google Scholar 

  28. Li S, Sun T, Liu C, Yang W, Tang Q (2018) A study of laser surface treatment in bonded repair of composite aircraft structures. R Soc Open Sci 5. https://doi.org/10.1098/rsos.171272

  29. Mittal K (2015) Advances in contact angle, wettability and adhesion, vol 2. https://doi.org/10.1002/9781119117018

  30. Baldan A (2012) Adhesion phenomena in bonded joints. Int J Adhes Adhes 38:95–116. https://doi.org/10.1016/j.ijadhadh.2012.04.007

    Article  Google Scholar 

  31. Maeva E, Severina I, Bondarenko S, Chapman G, O’neill B, Severin F et al (2004) Acoustical methods for the investigation of adhesively bonded structures: a review. Can J Phys 82:981–1025

    Article  Google Scholar 

  32. Pizzorni M, Gambaro C, Lertora E, Mandolfino C (2018) Effect of process gases in vacuum plasma treatment on adhesion properties of titanium alloy substrates. Int J Adhes Adhes 86:113–122. https://doi.org/10.1016/j.ijadhadh.2018.07.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pizzorni.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pizzorni, M., Lertora, E., Gambaro, C. et al. Low-pressure plasma treatment of CFRP substrates for epoxy-adhesive bonding: an investigation of the effect of various process gases. Int J Adv Manuf Technol 102, 3021–3035 (2019). https://doi.org/10.1007/s00170-019-03350-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03350-9

Keywords

Navigation