Skip to main content
Log in

On the application of 3D finite element modeling for small-diameter hole drilling of AISI 1045 steel

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper studies the three-dimensional finite element (FE) modeling for simulating the small-hole drilling process of AISI 1045 by using FE package Abaqus/Explicit. The large deformation of work and the chip formation in drilling process is realized by incorporating Johnson-Cook material constitutive model and material failure criterion. In order to verify the simulation model, the simulation and corresponding drilling tests are performed for the drilling process with 3-mm diameter solid carbide drills at several combination groups of rotational speeds and feed velocities. The estimated thrust force, torque and chip morphology from the simulation are in good agreement with those tested from experiments. The combination of both simulations and experiments not only reveals obvious varying pattern of thrust force, torque with the increasing of rotational speeds and feed velocities, which is consistent with the cutting theory, but also provides a more detailed and profound knowledge about the cutting mechanism including the contribution of chisel edge, drilling stage, and stress and strain distribution, which is assumed to be helpful for the optimization of the drill structure, geometry and drilling parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gaitonde VN, Karnik SR, Siddeswarappa B, Achyutha BT (2008) Integrating Box-Behnken design with genetic algorithm to determine the optimal parametric combination for minimizing burr size in drilling of AISI 316L stainless steel. Int J Adv Manuf Technol 37(3–4):230–240. doi:10.1007/s00170-007-0957-4

    Article  Google Scholar 

  2. Ozel T, Altan T (2000) Determination of workpiece flow stress and friction at the chip–tool contact for high-speed cutting. Int J Mach Tool Manuf 40(1):133–152. doi:10.1016/S0890- 6955(99)00051-6

    Article  Google Scholar 

  3. Tang L, Huang J, Xie L (2011) Finite element modeling and simulation in dry hard orthogonal cutting AISI D2 tool steel with CBN cutting tool. Int J Adv Manuf Technol 53:1167–1181. doi:10.1007/s00170-010-2901-2

    Article  Google Scholar 

  4. Deng WJ, Xia W, Tang Y (2009) Finite element simulation for burr formation near the exit of orthogonal cutting. Int J Adv Manuf Technol 43:1035–1045. doi:10.1007/s00170-008-1784-y

    Article  Google Scholar 

  5. Guu YH, Deng CS, Hou MT, Hsu CH, Tseng KS (2012) Optimization of machining parameters for stress concentration in microdrilling of titanium alloy. Mater Manuf Process 27(2):207–213. doi:10.1080/10426914.2011.566657

    Article  Google Scholar 

  6. Davim JP, Maranhão C (2009) A study of plastic strain and plastic strain rate in machining of steel AISI 1045 using FEM analysis. Mater Des 30(1):160–165. doi:10.1016/j.mat-des.2008.04.029

    Article  Google Scholar 

  7. Zhou L, Huang ST, Wang D, Yu XL (2011) Finite element and experimental studies of the cutting process of SiCp/Al composites with PCD tools. Int J Adv Manuf Technol 52:619–662. doi:10.1007/s00170-010-2776-2

    Article  Google Scholar 

  8. Zhang YC, Mabrouki T, Nelias D, Gong YD (2011) Chip formation in orthogonal cutting considering interface limiting shear stress and damage evolution based on fracture energy approach. Finite Elem Anal Des 47(7):850–863. doi:10.1016/j.finel.2011.02.016

    Article  Google Scholar 

  9. Özel T (2009) Computational modelling of 3D turning: influence of edge micro-geometry on forces, stresses, friction and tool wear in PcBN tooling. J Mater Process Technol 209(11):5167–5177. doi:10.1016/j.jmatprotec.2009.03.002

    Article  Google Scholar 

  10. Maurel-Pantel A, Fontaine M, Thibaud S, Gelin JC (2012) 3D FEM simulations of shoulder milling operations on a 304L stainless steel. Simul Model Pract Theory 22:13–27. doi:10.1016/j.simpat.2011.10.009

    Article  Google Scholar 

  11. Mao C, Zhou ZX, Ren YH, Zhang B (2010) Analysis and FEM simulation of temperature field in wet surface grinding. Mater Manuf Process 25(6):399–406. doi:10.1080/1042691-0903124811

    Article  Google Scholar 

  12. Singh I, Bhatnagar N, Viswanath P (2008) Drilling of uni-directional glass fiber reinforced plastics: experimental and finite element study. Mater Des 29(2):546–553. doi:10.1016/j.matdes.2007.01.029

    Article  Google Scholar 

  13. Isbilir O, Ghassemieh E (2012) Finite element analysis of drilling of carbon fibre reinforced composites. Appl Compos Mater 19(3–4):637–656. doi:10.1007/s10443-011-9224-9

    Article  Google Scholar 

  14. Durão LMP, De Moura M, Marques AT (2008) Numerical prediction of delamination onset in carbon/epoxy composites drilling. Eng Fract Mech 75(9):2767–2778. doi:10.1016/j.engfrac-mech.2007.03.009

    Article  Google Scholar 

  15. Phadnis VA, Makhdum F, Roy A, Silberschmidt VV (2013) Drilling in carbon/epoxy composites: experimental investigations and finite element implementation. Compos A:Appl Sci 47:41–51. doi:10.1016/j.compositesa.2012.11.020

    Article  Google Scholar 

  16. Gök K, Türkes E, Neseli S, Saglam H, Gök A (2013) The validation as experimental and numerical of the values of thrust force and torque in drilling process. J Eng Sci Technol Rev 6(3):93–99

    Google Scholar 

  17. Guo YB, Dornfeld DA (2000) Finite element modeling of burr formation process in drilling 304 stainless steel. J Manuf Sci Eng 122(4):612–619. doi:10.1115/1.1285885

    Article  Google Scholar 

  18. Muhammad R, Ahmed N, Shariff YM, Silberschmidt VV (2012) Finite-element analysis of forces in drilling of Ti-alloys at elevated temperature. Solid State Phenom 188:250–255. doi:10.4028/www.scientific.net/SSP.188.250

    Article  Google Scholar 

  19. Wu HB, Jia ZX, Zhang XC, Liu G (2012) Study on simulation and experiment of drilling for titanium alloys. Mater Sci Forum 704:657–663. doi:10.4028/www. scientific.net/MSF.704-705.657

    Google Scholar 

  20. Isbilir O, Ghassemieh E (2011) Finite element analysis of drilling of titanium alloy. In: 11th International Conference on the Mechanical Behavior of Materials 10: 1877–1882. doi: 10.1016/j.proeng.2011.04.312

  21. Endo H, Murahashi T, Marui E (2007) Accuracy estimation of drilled holes with small diameter and influence of drill parameter on the machining accuracy when drilling in mild steel sheet. Int J Mach Tool Manuf 47(1):175–181. doi:10.1016/j.ijmachtools.2006.02.001

    Article  Google Scholar 

  22. Liu HT (2007) Hole drilling with abrasive fluidjets. Int J Adv Manuf Technol 32(9–10):942–957. doi:10.1007/s00170-005-0398-x

    Article  Google Scholar 

  23. Zitoune R, Krishnaraj V, Collombet F (2010) Study of drilling of composite material and aluminium stack. Compos Struct 92(5):1246–1255. doi:10.1016/j.compstruct.2009.10.010

    Article  Google Scholar 

  24. Tsao CC, Hocheng H (2004) Taguchi analysis of delamination associated with various drill bits in drilling of composite material. Int J Mach Tool Manuf 44(10):1085–1090. doi:10.1016/j.ijmachtools.2004.02.019

    Article  Google Scholar 

  25. Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the seventh international symposium on ballistics, Hague, pp. 541–547

  26. Iqbal SA, Mativenga PT, Sheikh MA (2007) Characterization of machining of AISI 1045 steel over a wide range of cutting speeds. Part 2: evaluation of flow stress models and interface friction distribution schemes. P I Mech Eng B J Eng 221(5):917–926. doi:10.1243/ 09544054JEM797

    Google Scholar 

  27. Rech J, Claudin C, D’Eramo E (2009) Identification of a friction model—application to the context of dry cutting of an AISI 1045 annealed steel with a TiN-coated carbide tool. Tribol Int 42(5):738–744. doi:10.1016/j.triboint.2008.10.007

    Article  Google Scholar 

  28. Adibi-Sedeh AH, Vaziri M, Pednekar V, Madhavan V, Ivester RW (2005) Investigation of the effect of using different material models on finite element simulations of machining. In: Proceeding of the 8th CIRP International Workshop on Modeling of Machining Operations, Chemnitz, Germany, pp. 215–224

  29. Jaspers S, Dautzenberg JH (2002) Material behaviour in conditions similar to metal cutting: flow stress in the primary shear zone. J Mater Process Tech 122(2):322–330. doi:10.1016/S0924-0136(01)01228-6

    Article  Google Scholar 

  30. Abaqus 6.11 Documentation. Abaqus/CAE user’s manual, 2011

  31. Duan CZ, Dou T, Cai YJ, Li YY (2009) Finite element simulation and experiment of chip formation process during high speed machining of AISI 1045 hardened steel. Int J Recent Trends Eng 1(5):46–50

    Google Scholar 

  32. Özel T (2006) The influence of friction models on finite element simulations of machining. Int J Mach Tool Manuf 46(5):518–530. doi:10.1016/j.ijmachtools.2005.07.001

    Article  Google Scholar 

  33. Zorev NN (1963) Inter-relationship between shear processes occurring along tool face and shear plane in metal cutting. Int Res Prod Eng 42–49

  34. Childs THC, Maekawa K (1990) Computer-aided simulation and experimental studies of chip flow and tool wear in the turning of low alloy steels by cemented carbide tools. Wear 139:235–250

    Article  Google Scholar 

  35. Liu CR, Guo YB (2000) Finite element analysis of the effect of sequential cuts and tool–chip friction on residual stresses in a machined layer. Int J Mech Sci 42:1069–1086. doi:10.1016/S0020-7403(99)00042-9

    Article  MATH  Google Scholar 

  36. Haglund AJ, Kishawy HA, Rogers RJ (2008) An exploration of friction models for the chip–tool interface using an Arbitrary Lagrangian–Eulerian finite element model. Wear 265(3):452–460. doi:10.1016/j.wear.2007.11.025

    Article  Google Scholar 

  37. Grzesik W (2006) Determination of temperature distribution in the cutting zone using hybrid analytical–FEM technique. Int J Mach Tool Manuf 46(6):651–658. doi:10.1016/j.ijmach- tools.2005.07.009

    Article  Google Scholar 

  38. Shaw MC (2004) Metal cutting principals. Oxford University Press, USA

    Google Scholar 

  39. Astakhov VP (2006) Tribology of metal cutting, 1st Ed. Elsevier Science Publishing Company

  40. Barry J, Byrne G (2002) The mechanisms of chip formation in machining hardened steels. J Manuf Sci Eng Trans ASME 124:528–535. doi:10.1115/1.1455643

    Article  Google Scholar 

  41. Sun J, Guo YB (2008) A new multi-view approach to characterize 3D chip morphology and properties in end milling titanium Ti-6Al-4 V. Int J Mach Tools Manuf 48:1486–1494. doi:10.1016/j.ijmachtools.2008.04.002

    Article  Google Scholar 

  42. Farid AA, Sharif S, Idris MH (2011) Chip morphology study in high speed drilling of Al-Si alloy. Int J Adv Manuf Technol 57(5–8):555–564. doi:10.1007/s00170-011-3325-3

    Article  Google Scholar 

  43. Trent EM, Wright PK (2000) Metal cutting, 4th edn. Butterworth–Heinemann, Massachusetts

    Google Scholar 

  44. Paul A, Kapoor SG, DeVor RE (2005) Chisel edge and cutting lip shape optimization for improved twist drill point design. Int J Mach Tool Manuf 45(4):421–431. doi:10.1016/ j.ijmachtools.2004.09.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijing Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nan, X., Xie, L. & Zhao, W. On the application of 3D finite element modeling for small-diameter hole drilling of AISI 1045 steel . Int J Adv Manuf Technol 84, 1927–1939 (2016). https://doi.org/10.1007/s00170-015-7782-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7782-y

Keywords

Navigation