Skip to main content
Log in

Enhancement of tool life in drilling of hardened AISI 4340 steel using 3D FEM modeling

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Drilling is one of the most important machining processes that have been broadly applied in the manufacturing area. In this study, the effect of drill bit temperature on tool life of twist drills in the hard drilling in dry condition process of AISI 4340 high-strength low-alloy steel was investigated numerically and experimentally. In the numerical phase, a 3D finite element model of the hard drilling process was carried out with DEFORM-3D software. During the finite element analysis of the hard drilling processes, the tool temperature at drill bit was numerically obtained and compared with the experimental drill bit temperature. During the experimental phase, the tool life of twist drill is also measured at different machining conditions. At the end of the study, the results showed that there is a good agreement between the experimental and numerical results of tool drill bit temperature. It is observed that the tool life and tool temperature are related to each other. And the tool life can be increased by selecting the most appropriate parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang Y, Ren S, Liu Y, Si S (2017) A big data analytics architecture for cleaner manufacturing and maintenance processes of complex products. J Clean Prod 142(2):626–641. https://doi.org/10.1016/j.jclepro.2016.07.123

    Article  Google Scholar 

  2. Zhang Y, Ren S, Liu Y, Sakao T, Huisingh D (2017) A framework for big data driven product lifecycle management. J Clean Prod 159(2017):229–240. https://doi.org/10.1016/j.jclepro.2017.04.172

  3. Zhang Y, Qian C, Lv J, Liu Y (2016) Agent and cyber-physical system based self-organizing and self-adaptive intelligent shopfloor. IEEE Trans Ind Inf 13(2):737–747. https://doi.org/10.1109/TII.2016.2618892

    Article  Google Scholar 

  4. Zhang Y, Zhu Z, Lv J (2017) CPS-Based smart control model for shopfloor material handling. IEEE Trans Ind Inf. https://doi.org/10.1109/TII.2017.2759319

  5. Zhang Y, Wang J, Liu S, Qian C (2017) Game theory based real-time shop floor scheduling strategy and method for cloud manufacturing. Int J Intell Syst 32(4):437–463. https://doi.org/10.1002/int.21868

    Article  Google Scholar 

  6. Jung J (2001) Optimal drill point design and grinding for high throughput and deep hole making. University of Michigan, Ann Harbor

    Google Scholar 

  7. Iyer R, Koshy P, Ng E (2007) Helical milling: an enabling technology for hard machining precision holes in AISI D2 tool steel. Int J Mach Tools Manuf 47(2):205–210. https://doi.org/10.1016/j.ijmachtools.2006.04.006

    Article  Google Scholar 

  8. Mackerle J (2003) Finite element analysis and simulation of machining: an addendum: a bibliography (1996–2002). Int J Mach Tools Manuf 43(1):103–114. https://doi.org/10.1016/S0890-6955(02)00162-1

    Article  Google Scholar 

  9. Van Luttervelt CA, Childs THC, Jawahir IS, Klocke F, Venuvinod PK, Altintas Y, Armarego E, Dornfeld D, Grabec I, Leopold J, Lindstrom B, Lucca D, Obikawa T, Shirakashi SH (1998) Present situation and future trends in modelling of machining operations progress report of the CIRP working group ‘modelling of machining operations’. CIRP Annals-Manufacturing Technology 47(2):587–626. https://doi.org/10.1016/S0007-8506(07)63244-2

    Article  Google Scholar 

  10. Fuh KH (1987) Computer aided design and manufacturing for multifacet drills, vol v. 1. University of Wisconsin, Madison

    Google Scholar 

  11. Giasin K, Hodzic A, Phadnis V, Ayvar-Soberanis S (2016) Assessment of cutting forces and hole quality in drilling Al2024 aluminium alloy: experimental and finite element study. Int J Adv Manuf Technol 87(5):2041–2061. https://doi.org/10.1007/s00170-016-8563-y

    Article  Google Scholar 

  12. Kaneriya NG, Sharma GK (2014) Experimental evaluation and optimization of dry drilling parameters of AISI304 austenitic stainless steel using different twist drills. 5th International & 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) 543:1–7

  13. Min S, Dornfeld DA, Kim J, Shyu B (2001) Finite element modeling of burr formation in metal cutting. Mach Sci Technol 5(3):307–322. https://doi.org/10.1081/MST-100108617

    Article  Google Scholar 

  14. Min Y, Hong M, Xi Z, Jian L (2006) Determination of residual stress by use of phase shifting moiré interferometry and hole-drilling method. Opt Lasers Eng 44(1):68–79. https://doi.org/10.1016/j.optlaseng.2005.02.006

    Article  Google Scholar 

  15. Nouari M, List G, Girot F, Coupard D (2003) Experimental analysis and optimisation of tool wear in dry machining of aluminium alloys. Wear 255(7–12):1359–1368. https://doi.org/10.1016/S0043-1648(03)00105-4

    Article  Google Scholar 

  16. Ozcelik B, Bagci E (2006) Experimental and numerical studies on the determination of twist drill temperature in dry drilling: a new approach. Mater Des 27(10):920–927. https://doi.org/10.1016/j.matdes.2005.03.008

    Article  Google Scholar 

  17. Soo SL, Aspinwall DK, Dewes RC (2004) 3D FE modelling of the cutting of Inconel 718. J Mater Process Technol 150(1–2):116–123. https://doi.org/10.1016/j.jmatprotec.2004.01.046

    Article  Google Scholar 

  18. Strenkowski JS, Hsieh CC, Shih AJ (2004) An analytical finite element technique for predicting thrust force and torque in drilling. Int J Mach Tools Manuf 44(12–13):1413–1421. https://doi.org/10.1016/j.ijmachtools.2004.01.005

    Article  Google Scholar 

  19. Ucun İ (2016) 3D finite element modelling of drilling process of Al7075-T6 alloy and experimental validation. J Mech Sci Technol 30(4):1843–1850. https://doi.org/10.1007/s12206-016-0341-0

    Article  Google Scholar 

  20. Wu J, Wen J, Wang Z (2016) Study on the predicted model and experiment of drilling forces in drilling Ti6Al4V. J Braz Soc Mech Sci Eng 38(2):465–472. https://doi.org/10.1007/s40430-014-0304-2

    Article  Google Scholar 

  21. Kumar Pal A, Bhattacharyy A, Chandra Sen G (1965) Investigation of the torque in drilling ductile materials. Int J Mach Tool Des Res 4(4):205–221. https://doi.org/10.1016/0020-7357(65)90019-3

    Article  Google Scholar 

  22. Armarego EJA, Cheng CY (1972) Drilling with flat rake face and conventional twist drills—II. Experimental investigation. Int J Mach Tool Des Res 12(1):37–54. https://doi.org/10.1016/0020-7357(72)90010-8

    Article  Google Scholar 

  23. Williams RA (1974) A study of the drilling process. J Eng Ind 96(4):1207–1215. https://doi.org/10.1115/1.3438497

    Article  Google Scholar 

  24. Watson AR (1985) Drilling model for cutting lip and chisel edge and comparison of experimental and predicted results. IV—drilling tests to determine chisel edge contribution to torque and thrust. Int J Mach Tool Des Res 25(4):393–404. https://doi.org/10.1016/0020-7357(85)90038-1

    Article  Google Scholar 

  25. Agapiou JS, DeVries MF (1990) On the determination of thermal phenomena during drilling—Part II. Comparison of experimental and analytical twist drill temperature distributions. Int J Mach Tools Manuf 30(2):217–226. https://doi.org/10.1016/0890-6955(90)90131-2

    Article  Google Scholar 

  26. Stephenson DA, Agapiou JS (1992) Calculation of main cutting edge forces and torque for drills with arbitrary point geometries. Int J Mach Tools Manuf 32(4):521–538. https://doi.org/10.1016/0890-6955(92)90043-G

    Article  Google Scholar 

  27. Chandrasekharan V, Kapoor SG, DeVor RE (1998) A mechanistic model to predict the cutting force system for arbitrary drill point geometry. J Manuf Sci Eng 120(3):563–570. https://doi.org/10.1115/1.2830160

    Article  Google Scholar 

  28. Shatla M, Altan T (2000) Analytical modeling of drilling and ball end milling. J Mater Process Technol 98(1):125–133. https://doi.org/10.1016/S0924-0136(99)00313-1

    Article  Google Scholar 

  29. Bağci E, Ozcelik B (2006) Investigation of the effect of drilling conditions on the twist drill temperature during step-by-step and continuous dry drilling. Mater Des 27(6):446–454. https://doi.org/10.1016/j.matdes.2004.11.018

    Article  Google Scholar 

  30. Bayoumi AE, Xie JQ (1995) Some metallurgical aspects of chip formation in cutting Ti-6Al- 4V alloy. Mater Sci Eng A190(1–2):173–178

    Article  Google Scholar 

  31. Ezugwu EQ (1997) Titanium alloys and their machinability – a review. J Mater Process Technol 68(3):262–274

    Article  Google Scholar 

  32. Li, R. (2007) Experimental and numerical analysis of high-throughput drilling of titanium alloys. Ph.D. Dissertation, University of Michigan, Ann Arbor

  33. Shahan AR, Taheri AK (1993) Adiabatic shear bands in titanium and titanium alloys: a critical review. Mater Des 14(4):243–250

    Article  Google Scholar 

  34. Child, H.C.; Dalton, A.L. (1965) Machining of titanium alloys-metallurgical factors affecting machinability. In Proceedings of conference on machinability, 139–142

  35. Byrne G, Dornfeld D, Denkena B (2003) Advancing cutting technology. CIRP Ann Manuf Technol 52(2):483–507. https://doi.org/10.1016/S0007-8506(07)60200-5

    Article  Google Scholar 

  36. Chinchanikar S, Choudhury SK (2015) Machining of hardened steel—experimental investigations, performance modeling and cooling techniques: a review. Int J Mach Tools Manuf 89:95–109. https://doi.org/10.1016/j.ijmachtools.2014.11.002

    Article  Google Scholar 

  37. Klocke F, Brinksmeier E, Weinert K (2005) Capability profile of hard cutting and grinding processes. CIRP Ann Manuf Technol 54(2):22–45. https://doi.org/10.1016/S0007-8506(07)60018-3

    Article  Google Scholar 

  38. Liu C, Wang G, Dargusch MS (2012) Modelling, simulation and experimental investigation of cutting forces during helical milling operations. Int J Adv Manuf Technol 63(9):839–850. https://doi.org/10.1007/s00170-012-3951-4

    Article  Google Scholar 

  39. Arai M, Ohno T, Ogawa M, Sato S (1996) Drilling of high hardness steels with the high pressure supply of coolant. J Jpn Soc Precis Eng 62(9):1310–1314. https://doi.org/10.2493/jjspe.62.1310

    Article  Google Scholar 

  40. Coldwell H, Woods R, Paul M, Koshy P, Dewes R, Aspinwall D (2003) Rapid machining of hardened AISI H13 and D2 moulds, dies and press tools. J Mater Process Technol 135(2–3):301–311. https://doi.org/10.1016/S0924-0136(02)00861-0

    Article  Google Scholar 

  41. Sun S, Brandt M, Dargusch MS (2010) Thermally enhanced machining of hard-to-machine materials—a review. Int J Mach Tools Manuf 50(8):663–680. https://doi.org/10.1016/j.ijmachtools.2010.04.008

    Article  Google Scholar 

  42. Chen W-C, Tsao C-C (1999) Cutting performance of different coated twist drills. J Mater Process Technol 88(1–3):203–207. https://doi.org/10.1016/S0924-0136(98)00396-3

    Article  Google Scholar 

  43. Audy J (2008) A study of computer-assisted analysis of effects of drill geometry and surface coating on forces and power in drilling. J Mater Process Technol 204(1–3):130–138. https://doi.org/10.1016/j.jmatprotec.2007.10.079

    Article  Google Scholar 

  44. Gardner JD, Vijayaraghavan A, Dornfeld DA (2005) Comparative study of finite element simulation software. https://escholarship.org/uc/item/8cw4n2tf

  45. Gardner JD, Dornfeld D (2006) Finite element modeling of drilling using DEFORM. http://escholarship.org/uc/item/9xg0g32g

  46. Constantin C, Croitoru SM, Constantin G, Bisu CF (2009) 3D FEM Analysis of Cutting Processes. Machine and Production Systems Department. University of Politehnica, Bucharest ISBN: 978-960-474-246-2, 2009-10

    Google Scholar 

  47. Ahmed N (2014) Effect of changing drilling parameters on thrust force and torque. Middle-East J Sci Res 21(2):347–352. https://doi.org/10.5829/idosi.mejsr.2014.21.02.2008

    MathSciNet  Google Scholar 

  48. DEFORM-3D User manual Version 6.1 ,18th Oct., 2007 Deform 3D V6.1 Software Database. http://www.deform.com

  49. Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(1):31–48

    Article  Google Scholar 

  50. Daridon L, Oussouaddi O, Ahzi S (2004) Influence of the material constitutive models on the adiabatic shear band spacing: MTS, power law and Johnson–cook models. Int J Solids Struct 41:3109–3124

    Article  MATH  Google Scholar 

  51. Lee WS, Yeh GW (1997) The plastic deformation behaviour of AISI 4340 alloy steel subjected to high temperature and high strain rate loading conditions. J Mater Process Technol 71:224–234

    Article  Google Scholar 

  52. Mabrouki T, Rigal JF (2006) A contribution to a qualitative understanding of thermo-mechanical effects during chip formation in hard turning. J Mater Process Technol 176:214–221

    Article  Google Scholar 

  53. Cockroft M, Latham D (1968) Ductility and workability of metals. J Inst Met 96:33–39

    Google Scholar 

  54. Li H-Y, He H-B, Han W-Q, Yang J, Gu T, Li Y-m, Lyu S-K (2015) A study on cutting and tribology performances of TiN and TiAlN coated tools. Int J Precis Eng Manuf 16(4):781–786. https://doi.org/10.1007/s12541-015-0103-4

    Article  Google Scholar 

  55. Chi YC, Lee S, Cho K, Duffy J (1989) The effects of tempering and test temperature on the dynamic fracture initiation behavior of an AISI 4340 VAR steel. Mater Sci Eng A 114:105–126. https://doi.org/10.1016/0921-5093(89)90850-2

    Article  Google Scholar 

  56. Agapiou JS, Stephenson DA (1994) Analytical and experimental studies of drill temperatures. J Eng Ind 116(1):54–60. https://doi.org/10.1115/1.2901809

    Article  Google Scholar 

  57. Arrazola PJ, Arriola I, Davies MA, Cooke AL, Dutterer BS (2008) The effect of machinability on thermal fields in orthogonal cutting of AISI 4140 steel. CIRP Ann Manuf Technol 57(1):65–68. https://doi.org/10.1016/j.cirp.2008.03.139

    Article  Google Scholar 

  58. Bono M, Ni J (2001) The effects of thermal distortions on the diameter and cylindricity of dry drilled holes. Int J Mach Tools Manuf 41(15):2261–2270. https://doi.org/10.1016/S0890-6955(01)00047-5

    Article  Google Scholar 

  59. Tay AAO (1993) A review of methods of calculating machining temperature. J Mater Process Technol 36(3):225–257. https://doi.org/10.1016/0924-0136(93)90033-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingxiang Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majeed, A., Iqbal, A. & Lv, J. Enhancement of tool life in drilling of hardened AISI 4340 steel using 3D FEM modeling. Int J Adv Manuf Technol 95, 1875–1889 (2018). https://doi.org/10.1007/s00170-017-1235-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-1235-8

Keywords

Navigation