Skip to main content
Log in

Method for measuring thermal distortion in large machine tools by means of laser multilateration

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A new methodology to measure thermal distortion in large machine tools is proposed in this paper. The advantage of this method is that a single tracking interferometer can be used to measure thermal distortion of machines with large work volumes while maintaining low enough measurement cadence and uncertainty. A multilateration scheme is conducted using a single laser tracking device positioned on top of the machine table which is automated, and for each target point, all laser stations are reached prior to moving to the next target point; then, the whole measurement cycle is repeated during the test. For measuring angular thermal distortion, precision electronic levels are located in machine ram and column top; also, temperatures are registered in key points of the machine. Experimental measurements on a large column-type milling machine are done, and the effectiveness of the proposed methodology is verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Slocum A (1992) Precision Machine Design, Society of Manufacturing Engineers

  2. Arnone M (1998) High performance machining, Cincinnati, USA

  3. Dornfeld D, Lee D (2008) Machine design for precision manufacturing. Springer verlag, USA

    Book  Google Scholar 

  4. Bryan J (1990) International status of thermal error research. CIRP Ann 39(2):645–656

    Article  Google Scholar 

  5. Junyong XBWYH, Tielin S (2009) Experimental research on factors influencing thermal dynamics characteristics of feed system. Precis Eng 34(2):357–368

    Article  Google Scholar 

  6. Hocken R (1980) Report of working group 1 of the machine tool task force: machine tool accuracy, Lawrence Livermore Laboratories. University of California, UCRL-52960-S, Livermore, CA

    Google Scholar 

  7. ISO 230–3 (2007) Test code for machine tools—determination of thermal effects, International Standardization Organization

  8. Ruijl T, van der Sanden J (2012) Thermal effects in mechatronic systems. A system level approach to thermal design and modeling, de ASPE Tutorial, San Diego, CA

  9. Donaldson R, Thompson D (1986) Design and performance of a small precision CNC turning machine. CIRP Ann 35(1):373–376

    Article  Google Scholar 

  10. Sartori S, Zhang G (1995) Geometric error measurement and compensation of machines. CIRP Ann 44(2):599–609

    Article  Google Scholar 

  11. Sata T, Takeuchi Y and Okubo N (1975) Control of the thermal deformation of a machine tool, 16th MTDR Conference

  12. Hatamura Y, Nagao T, Mitsuishi M, Kato K, Taguchi S, Okumura T, Nakagawa G (1993) Development of an intelligent machining center incorporating active compensation for thermal distortion. CIRP Ann 42(1):549–552

    Article  Google Scholar 

  13. Fraser S, Attia M, Osman M (1999) Modelling, identification and control of thermal deformation of machine tool structure. Part 5: experimental verification. J Manuf Sci Eng 3(121):517–523

    Article  Google Scholar 

  14. Spur G, Hoffmann E, Paluncic Z, Benzinger K, Nymoen H (1988) Thermal behavior optimization of machine tools. CIRP Ann 37(1):401–405

    Article  Google Scholar 

  15. Mayr J, Jedrzejewski J, Uhlmann E, Donmez A, Knapp W, Härtig F, Wendt K, Moriwaki T, Shore P, Schmitt R, Brecher CWT, Wegener K (2012) Thermal issues in machine tools. CIRP Ann Manuf Technol 61(2):771–791

    Article  Google Scholar 

  16. Qianjian G, Jianguo Y (2011) Application of projection pursuit regression to thermal error modeling of a CNC machine tool. Int J Mach Tool Manuf 55(5–8):623–629

    Article  Google Scholar 

  17. Yingchun L et al (2014) Thermal optimization of an ultra-precision machine tool by the thermal displacement decomposition and counteraction method. Int J Adv Manuf Technol. doi:10.1007/s00170-014-6304-7

    Google Scholar 

  18. Mian N, Fletcher S, Longstaff A, Myers A (2013) Efficient estimation by FEA of machine tool distortion due to environmental temperature perturbations. Precis Eng 37(2):372–379

    Article  Google Scholar 

  19. Lopez de Lacalle L and Lamikiz A (2008) Machine tools for high performance machining, Springer

  20. Suh J, Lee D (2004) Thermal characteristics of composite sandwich structures for machine tool moving body applications. Compos Struct 66(1–4):429–438

    Article  Google Scholar 

  21. Li Y, Zhao W, Wenwu W, Bingheng L, Chen Y (2014) Thermal error modeling of the spindle based on multiple variables for the precision machine tool. Int J Adv Manuf Technol 72(9–12):1415–1427

    Article  Google Scholar 

  22. Wang Z, Maropolous PG (2013) Real-time error compensation of a three-axis machine tool using a laser tracker. Int J Adv Manuf Technol 69(1–4):919–933

    Article  Google Scholar 

  23. Balsamo A, Marques D, Sartori S (1990) A method for thermal deformation corrections of CMMs. CIRP Ann 39(1):557–560

    Article  Google Scholar 

  24. Lo C, Yuan J, Ni J (1995) An application of real-time error compensation on a turning center. Int J Mach Tool Manuf 35(12):1669–1682

    Article  Google Scholar 

  25. Zhu J (2008) Robust thermal error modeling and compensation for CNC machine tools, The University Of Michigan

  26. Yan J, Yang J (2009) Application of synthetic grey correlation theory on thermal point optimization for machine tool thermal error compensation. Int J Adv Manuf Technol 43(11–12):1124–1132

    Article  Google Scholar 

  27. Li S, Zhang Y, Zhang G (1997) A study of pre-compensation for thermal errors of NC machine tools. Int J Mach Tool Manuf 37(12):1715–1719

    Article  Google Scholar 

  28. Lim E, Meng C (1997) Error compensation for sculptured surface productions by the application of control-surface using predicted machining errors. J Manuf Sci Eng 119(3):402–419

    Article  Google Scholar 

  29. Gomez-acedo E, Olarra A, Orive J, López de Lacalle LN (2013) Methodology for the design of a thermal distortion compensation for large machine tools based in state-space representation with Kalman filter. Int J Mach Tool Manuf 75:100–108

  30. Yang S, Kim KK, Park Y (2004) Measurement of spindle thermal errors in machine tool using hemispherical ball bar test. Int J Mach Tool Manuf 44(2–3):333–340

    Article  Google Scholar 

  31. Zhang G, Fu J (2000) A method for optical CMM calibration using a grid plate. CIRP Ann 49(1):399–402

    Article  Google Scholar 

  32. De Aquino Silva J, Burdekin M (2002) A modular space frame for assessing the performance of co-ordinate measuring machines (CMMs). Precis Eng 26(1):37–48

    Article  Google Scholar 

  33. Vyroubal J (2012) Compensation of machine tool thermal deformation in spindle axis direction based on decomposition method. Precis Eng 36(1):121–127

    Article  Google Scholar 

  34. Chen J (1996) Fast calibration and modeling of thermally-induced machine tool errors in real machining. Int J Mach Tool Manuf 37(2):159–169

    Article  Google Scholar 

  35. Hughes E (2000) Design of a high-accuracy CMM based on multi-lateration techniques. CIRP Ann Manuf Technol 49(1):391–394

    Article  Google Scholar 

  36. Yilei L, Dong G, Yong L (2014) Volumetric calibration in multi-space in large-volume machine based on measurement uncertainty analysis. Int J Adv Manuf Technol. doi:10.1007/s00170-014-6367-5

    Google Scholar 

  37. Estler W (2002) Large scale metrology—an update. CIRP Ann Manuf Technol 51(2):587–609

    Article  Google Scholar 

  38. Srinivasa N, Ziegert J, Mize C (1994) Spindle thermal drift measurement using the laser ball bar. Precis Eng 16(4):259–267

    Article  Google Scholar 

  39. Schwenke FMHJKHH (2005) Error mapping of CMMs and machine tools by a single tracking interferometer. CIRP Ann Manuf Technol 54(1):475–478

    Article  Google Scholar 

  40. Zhang Z, Hong H (2013) A general strategy for geometric error identification of multi-axis machine tools based on point measurement. Int J Adv Manuf Technol 69(5–8):1483–1497

    Article  Google Scholar 

  41. Schwenke H, Knapp W, Haitjema H (2008) Geometric error measurement and compensation of machines—an update. CIRP Ann 57(2):660–675

    Article  Google Scholar 

  42. K. Wendt, M. Franke and F. Härtig, Measuring large 3D structures using four portable tracking laser interferometers, Measurement, vol. 45, n° 10, pp. 2339–2345, 2012

  43. N. Draper and H. Smith, Applied Regression Analysis, Wiley, 1981

  44. deVicente J and Sánchez A (2013) Mesurandos n-dimensionales, ajustes por Mínimos Cuadrados y propagación de incertidumbres, de 5° congreso español de metrología

  45. Tarantola A (2005) Inverse Problem Theory, SIAM

  46. ISO 841: (2001) Industrial automation systems and integration—numerical control of machines—coordinate system and motion nomenclature, International Standardization Organization

  47. ISO 230–1: (2012) Test code for machine tools—part 1: geometric accuracy of machines operating under no-load or quasi-static conditions, International Standardization Organization

  48. Gomez-Acedo E, Olarra A, López de Lacalle LN (2012) A method for thermal characterization and modeling of large gantry-type machine tools. Int J Adv Manuf Technol 62(9–12):875–886

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Gomez-Acedo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez-Acedo, E., Olarra, A., Zubieta, M. et al. Method for measuring thermal distortion in large machine tools by means of laser multilateration. Int J Adv Manuf Technol 80, 523–534 (2015). https://doi.org/10.1007/s00170-015-7000-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7000-y

Keywords

Navigation