Skip to main content
Log in

Application of synthetic grey correlation theory on thermal point optimization for machine tool thermal error compensation

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper presents two new methods to optimize the selection of minimum number of thermal sensors for machine tool thermal error compensation. The two methods, namely, direct criterion method and indirect grouping method, are based on the synthetic grey correlation theory. They are applied to analyze the data of an air cutting experiment on a CNC turning center. After optimization, the number of thermal points reduced from 16 to four. Thus, for machine tool thermal error modeling, the number of temperature variables is greatly reduced while coupling problems among temperature variables can be avoided. A real cutting experiment is then conducted to verify the efficiency of the presented optimization methods under practical manufacturing conditions. The comparison of the results between the model with all 16 thermal sensors and the model with four optimized thermal sensors indicates that, after optimization, the model accuracy is greatly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools—a review. Part II: thermal errors. Int J Mach Tools Manuf 40:1257–1284 doi:10.1016/S0890-6955(00)00010-9

    Article  Google Scholar 

  2. Bryan J (1990) International status of thermal error research. Ann CIRP 39:645–656

    Article  Google Scholar 

  3. Ni J (1997) A perspective review of CNC machine accuracy enhancement through real-time error compensation. China Mech Eng 8:29–32

    Google Scholar 

  4. Chen JS, Yuan JX, Ni J (1996) Thermal error modeling for real-time compensation. Int J Adv Manuf Technol 12:266–275 doi:10.1007/BF01239613

    Article  Google Scholar 

  5. Wang Y, Zhang G, Moon KS, Sutherland JW (1998) Compensation for the thermal error of a multi-axis machining center. J Mater Process Technol 75:45–53 doi:10.1016/S0924-0136(97)00291-4

    Article  Google Scholar 

  6. Jedrzejewski J, Modrzyci W (1992) A new approach to modeling thermal behavior of a machine tool under service conditions. Ann CIRP 37:401–405

    Google Scholar 

  7. Zhang B, Zhuang Y, Cui C (1992) Improving the thermal center in corporation acting active compensation for thermal distortion. Ann CIRP 141:455–458

    Google Scholar 

  8. Hatamura Y, Nagao T, Mitsuishi M, Kato K, Taguchi S, Okumura T, Nakagawa G, Sugishita H (1993) Development of an intelligent machining center incorporating active compensation for thermal distortion. Ann CIRP 42:549–552

    Article  Google Scholar 

  9. Postlethwaite SR, Allen JP, Ford DG (1999) Machine tool thermal error reduction—an appraisal. Proc Inst Mech Eng Part B J Eng Manuf 213:1–9 doi:10.1243/0954405991516598

    Article  Google Scholar 

  10. Yang H, Ni J (2005) Dynamic neural network modeling for nonlinear nonstationary machine tool thermally induced error. Int J Mach Tools Manuf 45:455–465 doi:10.1016/j.ijmachtools.2004.09.004

    Article  Google Scholar 

  11. Kang Y, Chang CW, Huang YR, Hsu CL, Nieh F (2007) Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools. Int J Mach Tools Manuf 47:376–387 doi:10.1016/j.ijmachtools.2006.03.007

    Article  Google Scholar 

  12. Yang JG, Yuan JX, Ni J (1999) Thermal error mode analysis and robust modeling for error compensation on a CNC turning center. Int J Mach Tools Manuf 39:1367–1381 doi:10.1016/S0890-6955(99)00008-5

    Article  Google Scholar 

  13. Yang JG, Ren YQ, Liu GL, Zhao HT, Dou XL, Chen WZ, He SW (2005) Testing, variable selecting and modeling of thermal errors on an INDEX-G200 turning center. Int J Adv Manuf Technol 26:814–818 doi:10.1007/s00170-003-1908-3

    Article  Google Scholar 

  14. Li YX, Yang JG, Gelvis T, Li YY (2008) Optimization of measuring points for machine tool thermal error based on grey system theory. Int J Adv Manuf Technol 35:745–750 doi:10.1007/s00170-006-0751-8

    Article  Google Scholar 

  15. Deng JL (2002) Basis of grey theory. Huazhong University of Science and Technology Press, People’s Republic of China

    Google Scholar 

  16. Yang JG (1998) Error synthetic compensation technique and application for NC machine tools. Dissertation, Shanghai Jiao Tong University, People’s Republic of China

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Y. Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, J.Y., Yang, J.G. Application of synthetic grey correlation theory on thermal point optimization for machine tool thermal error compensation. Int J Adv Manuf Technol 43, 1124–1132 (2009). https://doi.org/10.1007/s00170-008-1791-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-008-1791-z

Keywords

Navigation