Skip to main content
Log in

A hybrid differential evolution method for permutation flow-shop scheduling

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The permutation flow-shop scheduling problem (PFSSP) is a typical combinational optimization problem, which is of wide engineering background and has been proved to be strongly NP-hard. In this paper, a hybrid algorithm based on differential evolution (DE), named HDE, is proposed for the single-objective PFSSPs. Firstly, to make DE suitable for solving PFSSPs, a largest-order-value (LOV) rule is presented to convert the continuous values of individuals in DE to job permutations. Secondly, after the DE-based exploration, a simple but efficient local search, which is designed according to the PFSSPs’ landscape, is applied to emphasize exploitation. Thus, not only does the HDE apply the parallel evolution mechanism of DE to perform effective exploration (global search), but it also adopts problem-dependent local search methodology to adequately perform exploitation (local search). Based on the theory of finite Markov chains, the convergence property of the HDE is analyzed. Then, the HDE is extended to a multi-objective HDE (MHDE) to solve the multi-objective PFSSPs. Simulations and comparisons based on benchmarks for both single-objective and multi-objective PFSSPs are carried out, which show the effectiveness, efficiency, and robustness of the proposed HDE and MHDE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang L (2003) Shop scheduling with genetic algorithms. Tsinghua University Press & Springer, Beijing, China

    Google Scholar 

  2. Stadtler H (2005) Supply chain management and advanced planning—basics, overview and challenges. Eur J Oper Res 163:575–588

    Article  MATH  Google Scholar 

  3. Pinedo M (2002) Scheduling: theory, algorithms, and systems, 2nd edn. Prentice-Hall, New Jersey

    MATH  Google Scholar 

  4. Johnson SM (1954) Optimal two- and three- stage production schedules with setup times included. Nav Res Logist Q 1:61–68

    Article  Google Scholar 

  5. Lageweg BJ, Lenstra JK, Rinnooy Kan AHG (1978) A general bounding scheme for the permutation flow-shop problem. Oper Res 26:53–67

    MATH  Google Scholar 

  6. Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: toward memetic algorithms. C3P Report 826, Caltech Concurrent Computation Program, California Institute of Technology, Pasadena, California

  7. Palmer DS (1965) Sequencing jobs through a multi-stage process in the minimum total time—a quick method of obtaining a near optimum. Oper Res Q 16:101–107

    Article  Google Scholar 

  8. Dannenbring D (1977) An evaluation of flow shop sequencing heuristics. Manage Sci 23:1174–1182

    MATH  Google Scholar 

  9. Campbell HG, Dudek RA, Smith ML (1970) A heuristic algorithm for the n job, m machine sequencing problem. Manage Sci 16(B):630–637

    Google Scholar 

  10. Nawaz M, Enscore E Jr, Ham I (1983) A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. OMEGA 11:91–95

    Article  Google Scholar 

  11. Osman IH, Potts CN (1989) Simulated annealing for permutation flow-shop scheduling. OMEGA 17:551–557

    Article  Google Scholar 

  12. Reeves CR (1995) A genetic algorithm for flowshop sequencing. Comput Oper Res 22:5–13

    Article  MATH  Google Scholar 

  13. Reeves CR, Yamada T (1998) Genetic algorithms, path relinking and the flowshop sequencing problem. Evol Comput 6:45–60

    Article  Google Scholar 

  14. Wang L, Zheng D-Z (2003) An effective hybrid heuristic for flow shop scheduling. Int J Adv Manuf Tech 21:38–44

    Article  Google Scholar 

  15. Nowicki E, Smutnicki C (1996) A fast tabu search algorithm for the permutation flow-shop problem. Eur J Oper Res 91:160–175

    Article  MATH  Google Scholar 

  16. Grabowski J, Wodecki M (2004) A very fast Tabu search algorithm for the permutation flow shop problem with makespan criterion. Comput Oper Res 31:1891–1909

    Article  MATH  MathSciNet  Google Scholar 

  17. Wang L, Zheng D-Z (2003) A modified evolutionary programming for flow shop scheduling. Int J Adv Manuf Tech 22:522–527

    Article  Google Scholar 

  18. Hansen P, Mladenovic N (2001) Variable neighborhood search: principles and applications. Eur J Oper Res 130:449–467

    Article  MATH  MathSciNet  Google Scholar 

  19. Daniels RL, Chambers RJ (1990) Multiobjective flow-shop scheduling. Nav Res Log 37:981–995

    Article  MATH  Google Scholar 

  20. Rajendran C (1992) Two-stage flowshop scheduling problem with bicriteria. J Oper Res Soc 43(9):871–884

    Article  MATH  Google Scholar 

  21. Bagchi TP (1999) Multiobjective scheduling by genetic algorithms. Kluwer, Boston, Massachusetts

    MATH  Google Scholar 

  22. Srinivas N, Deb K (1995) Multiobjective optimization using nondominated sorting genetic algorithms. Evol Comput 2(3):221–248

    Article  Google Scholar 

  23. T’kindt V, Monmarché N, Tercinet F, Laügt D (2002) An Ant Colony Optimization algorithm to solve a 2-machine bicriteria flowshop scheduling problem. Eur J Oper Res 142:250–257

    Article  MATH  Google Scholar 

  24. Ponnambalam SG, Jagannathan H, Kataria M, Gadicheria A (2004) A TSP-GA multi-objective algorithm for flow-shop scheduling. Int J Adv Manuf Tech 23(11):909–915

    Article  Google Scholar 

  25. Loukil T, Teghem J, Tuyttens D (2005) Solving multi-objective production scheduling problems using metaheuristics. Eur J Oper Res 161:42–61

    Article  MATH  MathSciNet  Google Scholar 

  26. Murata T, Ishibuchi H, Tanaka H (1996) Genetic algorithms for flowshop scheduling problems. Comput Ind Eng 30:1061–1071

    Article  Google Scholar 

  27. Stutzle T (1998) An ant approach to the flow shop problem. In: Proceedings of the 6th European Congress on Intelligent Techniques and Soft Computing (EUFIT’98), Aachen, Germany, September 1998, pp 1560–1564

  28. Nearchou AC (2004) A novel metaheuristic approach for the flow shop scheduling problem. Eng Appl of Artif Intel 17:289–300

    Article  Google Scholar 

  29. Cheng RW, Gen M (1997) Parallel machine scheduling problems using memetic algorithms. Comput Ind Eng 33:761–764

    Article  Google Scholar 

  30. Merz P (2000) Memetic algorithms for combinatorial optimization problems: fitness landscapes and effective search strategies. PhD dissertation, University of Siegen, Germany

  31. Merz P, Freisleben B (2000) Fitness landscapes, memetic algorithms, and greedy operators for graph bipartitioning. Evol Comput 8:61–91

    Article  Google Scholar 

  32. Burke EK, Smith AJ (2000) Hybrid evolutionary techniques for the maintenance scheduling problem. IEEE T Power Syst 15:122–128

    Article  Google Scholar 

  33. Ong YS, Keane AJ (2004) Meta-Lamarckian learning in memetic algorithms. IEEE T Evol Comput 8:99–110

    Article  Google Scholar 

  34. Merz P, Freisleben B (2000) Fitness landscape analysis and memetic algorithms for the quadratic assignment problem. IEEE T Evol Comput 4:337–352

    Article  Google Scholar 

  35. França PM, Mendes A, Moscato P (2001) A memetic algorithm for the total tardiness single machine scheduling problem. Eur J Oper Res 132:224–242

    Article  MATH  Google Scholar 

  36. Quintero A, Pierre S (2003) Sequential and multi-population memetic algorithms for assigning cells to switches in mobile networks. Comput Netw 43:247–261

    Article  MATH  Google Scholar 

  37. Pastorino M, Caorsi S, Massa A, Randazzo A (2004) Reconstruction algorithms for electromagnetic imaging. IEEE T Instrum Meas 3:692–699

    Article  Google Scholar 

  38. Ishibuchi H, Yoshida T, Murata T (2003) Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE T Evol Comput 7:204–223

    Article  Google Scholar 

  39. Hart WE, Krasnogor N, Smith JE (2004) Recent advances in memetic algorithms. Springer, Berlin Heidelberg New York

    Google Scholar 

  40. Ishibuchi H, Murata T (1998) A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE T Syst Man Cy C 28(3):392–403

    Article  Google Scholar 

  41. Arroyo JEC, Armentano VA (2005) Genetic local search for multi-objective flowshop scheduling problems. Eur J Oper Res 167:717–738

    Article  MATH  MathSciNet  Google Scholar 

  42. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MATH  MathSciNet  Google Scholar 

  43. Ilonen J, Kamarainen JK, Lampinen J (2003) Differential evolution training algorithm for feed-forward neural networks. Neural Process Lett 17(1):93–105

    Article  Google Scholar 

  44. Chang FP, Hwang C (2004) Design of digital PID controllers for continuous-time plants with integral performance criteria. J Chin Inst Chem Eng 35(6):683–696

    Google Scholar 

  45. Chang YP, Wu CJ (2005) Optimal multiobjective planning of large-scale passive harmonic filters using hybrid differential evolution method considering parameter and loading uncertainty. IEEE T Power Deliver 20(1):408–416

    Article  Google Scholar 

  46. Ali MM, Törn A (2004) Population set-based global optimization algorithms: some modifications and numerical studies. Comput Oper Res 31(10):1703–1725

    Article  MATH  MathSciNet  Google Scholar 

  47. Tasgetiren MF, Liang YC, Sevkli M, Gencyilmaz G (2004) Differential evolution algorithm for permutation flowshop sequencing problem with makespan criterion. In: Proceedings of the 4th International Symposium on Intelligent Manufacturing Systems (IMS 2004), Sakarya, Turkey, September 2004, pp 442–452

  48. Onwubolu G, Davendra D (2006) Scheduling flow shops using differential evolution algorithm. Eur J Oper Res 171(2):674–692

    Article  MATH  Google Scholar 

  49. Reeves CR (1999) Landscapes, operators and heuristic search. Ann Oper Res 86:473–490

    Article  MATH  MathSciNet  Google Scholar 

  50. Nowicki E, Smutnicki C (2006) Some aspects of scatter search in the flow-shop problem. Eur J Oper Res 169:654–666

    Article  MATH  MathSciNet  Google Scholar 

  51. Taillard ED (1990) Some efficient heuristic methods for the flow shop sequencing problem. Eur J Oper Res 47:65–74

    Article  MATH  MathSciNet  Google Scholar 

  52. Landa Silva JD, Burke EK, Petrovic S (2004) An introduction to multiobjective metaheuristics for scheduling and timetabling. Lect Notes Econ Math Syst 535:91–129

    MathSciNet  Google Scholar 

  53. Price K, Storn R (2006) Differential evolution (DE) for continuous function optimization. Home page at http://www.icsi.berkeley.edu/%7Estorn/code.html

  54. Bean JC (1994) Genetic algorithm and random keys for sequencing and optimization. ORSA J Comput 6(2):154–160

    MATH  Google Scholar 

  55. Krasnogor N (2002) Studies on the theory and design space of memetic algorithms. PhD dissertation, University of the West of England, Bristol, UK

  56. Ong YS, Lim MH, Zhu N, Wong KW (2006) Classification of adaptive memetic algorithms: a comparative study. IEEE T Syst Man Cy B 36:141–152

    Article  Google Scholar 

  57. Schiavinotto T, Stützle T (2007) A review of metrics on permutations for search landscape analysis. Comput Oper Res 34(10):3143–3153

    Article  MATH  Google Scholar 

  58. Iosifescu M (1980) Finite Markov processes and their applications. Wiley, New York

    MATH  Google Scholar 

  59. Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, London, UK

    MATH  Google Scholar 

  60. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. IEEE T Evol Comput 8(2):173–195

    Article  Google Scholar 

  61. Carlier J (1978) Ordonnancements a contraintes disjonctives. R.A.I.R.O. Recherche Operationelle/Oper Res 12:333–351

    MATH  MathSciNet  Google Scholar 

  62. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE T Evol Comput 3(4):257–271

    Article  Google Scholar 

  63. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE T Evol Comput 6(2):182–197

    Article  Google Scholar 

  64. Knowles JK, Corne DW (2000) Approximating the nondominated front using the Pareto archived evolution strategy. Evol Comput 8(2):149–172

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Qian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, B., Wang, L., Hu, R. et al. A hybrid differential evolution method for permutation flow-shop scheduling. Int J Adv Manuf Technol 38, 757–777 (2008). https://doi.org/10.1007/s00170-007-1115-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-007-1115-8

Keywords

Navigation