Skip to main content
Log in

Intraoperative factors affecting conversion from cruciate retaining to cruciate substituting in total knee arthroplasty

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The purpose of this study was to analyse the factors affecting the conversion from posterior cruciate ligament (PCL)-retaining (CR) to PCL-substituting (PS) prostheses during total knee arthroplasty (TKA).

Methods

A total of 920 TKAs, which had been preoperatively planned to undergo implantation of CR-type prostheses, were reviewed retrospectively. Of these, 83 knees (9.0 %) were converted intraoperatively to PS prostheses. The clinical and radiological factors of the non-converted (CR) and converted (PS) groups were compared. Clinically, age, gender, body mass index, angle of flexion contracture, size of the femoral component, and thickness of the polyethylene insert were compared between the CR and PS groups. Radiologically, the severity of the varus deformity and the posterior tibial slope angle (PSA) were compared between the CR and PS groups.

Results

No significant differences in age, gender, body mass index, range of motion, thickness of the polyethylene insert, or severity of varus deformity were identified. The average preoperative angle of flexion contracture was 5.9° ± 7.4° in the CR group and 8.1° ± 9.1° in the PS group (p = 0.002). The average preoperative PSA was 9.6° ± 4.0° in the CR group and 11.0° ± 5.0° in the PS group (p = 0.018). The conversion rates to a PS-type femoral component of size C, D, and E were 13.1, 7.0, and 6.3 %, respectively (p = 0.004).

Conclusion

The conversion rate from CR- to PS-type prostheses was high in patients with severe flexion contracture, steep posterior slope, and a small femoral component size. These factors should be carefully considered for appropriate selection of prosthesis type.

Level of evidence

IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abdel MP, Morrey ME, Jensen MR, Morrey BF (2011) Increased long-term survival of posterior cruciate-retaining versus posterior cruciate-stabilizing total knee replacements. J Bone Joint Surg Am 93:2072–2078

    Article  PubMed  Google Scholar 

  2. Bae DK, Song SJ, Yoon KH (2010) Total knee arthroplasty following closed wedge high tibial osteotomy. Int Orthop 34:283–287

    Article  PubMed  Google Scholar 

  3. Bae DK, Song SJ, Yoon KH, Noh JH, Moon SC (2012) Comparative study of tibial posterior slop angle following cruciate-retaining total knee arthroplasty using one of three implants. Int Orthop 36:755–760

    Article  PubMed  Google Scholar 

  4. Baldini A, Scuderi GR, Aglietti P, Chalnick D, Insall JN (2004) Flexion-extension gap changes during total knee arthroplasty: effect of posterior cruciate ligament and posterior osteophytes removal. J Knee Surg 17:69–72

    CAS  PubMed  Google Scholar 

  5. Becker MW, Insall JN, Faris PM (1991) Bilateral total knee arthroplasty. One cruciate retaining and one cruciate substituting. Clin Orthop Relat Res 271:122–124

    PubMed  Google Scholar 

  6. Bercik MJ, Joshi A, Parvizi J (2013) Posterior cruciate-retaining versus posterior-stabilized total knee arthroplasty: a meta-analysis. J Arthroplasty 28:439–444

    Article  PubMed  Google Scholar 

  7. Berend KR, Lombardi AV Jr, Adams JB (2006) Total knee arthroplasty in patients with greater than 20 degrees flexion contracture. Clin Orthop Relat Res 452:83–87

    Article  PubMed  Google Scholar 

  8. Bonnin MP, Schmidt A, Basiglini L, Bossard N, Dantony E (2013) Mediolateral oversizing influences pain, function, and flexion after TKA. Knee Surg Sports Traumatol Arthrosc 21:2314–2324

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen JY, Lo NN, Chong HC, Pang HN, Tay DK, Chin PL, Chia SL, Yeo SJ (2014) Cruciate retaining versus posterior stabilized total knee arthroplasty after previous high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 23:3607–3613

    Article  PubMed  Google Scholar 

  10. Cheng FB, Ji XF, Lai Y, Feng JC, Zheng WX, Sun YF, Fu YW, Li YQ (2009) Three dimensional morphometry of the knee to design the total knee arthroplasty for Chinese population. Knee 16:341–347

    Article  PubMed  Google Scholar 

  11. Chiu YS, Chen WM, Huang CK, Chiang CC, Chen TH (2004) Fracture of the polyethylene tibial post in a NexGen posterior-stabilized knee prosthesis. J Arthroplasty 19:1045–1049

    Article  PubMed  Google Scholar 

  12. Clark CR, Rorabeck CH, MacDonald S, MacDonald D, Swafford J, Cleland D (2001) Posterior-stabilized and cruciate-retaining total knee replacement: a randomized study. Clin Orthop Relat Res 392:208–212

    Article  PubMed  Google Scholar 

  13. Dai Y, Scuderi GR, Penninger C, Bischoff JE, Rosenberg A (2014) Increased shape and size offerings of femoral components improve fit during total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 22:2931–2940

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fitz W, Sodha S, Reichmann W, Minas T (2012) Does a modified gap-balancing technique result in medial-pivot knee kinematics in cruciate-retaining total knee arthroplasty? A pilot study. Clin Orthop Relat Res 470:91–98

    Article  PubMed  Google Scholar 

  15. Fuchs S, Tibesku CO, Genkinger M, Laass H, Rosenbaum D (2003) Proprioception with bicondylar sledge prostheses retaining cruciate ligaments. Clin Orthop Relat Res 406:148–154

    Article  PubMed  Google Scholar 

  16. Harato K, Bourne RB, Victor J, Snyder M, Hart J, Ries MD (2008) Midterm comparison of posterior cruciate-retaining versus -substituting total knee arthroplasty using the Genesis II prosthesis. A multicenter prospective randomized clinical trial. Knee 15:217–221

    Article  PubMed  Google Scholar 

  17. Hino K, Ishimaru M, Iseki Y, Watanabe S, Onishi Y, Miura H (2013) Mid-flexion laxity is greater after posterior-stabilised total knee replacement than with cruciate-retaining procedures: a computer navigation study. Bone Joint J 95-B:493–497

    Article  CAS  PubMed  Google Scholar 

  18. Hitt K, Shurman JR, Greene K, McCarthy J, Moskal J, Hoeman T, Mont MA (2003) Anthropometric measurements of the human knee: correlation to the sizing of current knee arthroplasty systems. J Bone Joint Surg Am 85-A(Suppl 4):115–122

    PubMed  Google Scholar 

  19. In Y, Kim JM, Woo YK, Choi NY, Sohn JM, Koh HS (2009) Factors affecting flexion gap tightness in cruciate-retaining total knee arthroplasty. J Arthroplasty 24:317–321

    Article  PubMed  Google Scholar 

  20. In Y, Kim SJ, Kim JM, Woo YK, Choi NY, Kang JW (2009) Agreements between different methods of gap balance estimation in cruciate-retaining total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 17:60–64

    Article  PubMed  Google Scholar 

  21. Joglekar S, Gioe TJ, Yoon P, Schwartz MH (2012) Gait analysis comparison of cruciate retaining and substituting TKA following PCL sacrifice. Knee 19:279–285

    Article  PubMed  Google Scholar 

  22. Kadoya Y, Kobayashi A, Komatsu T, Nakagawa S, Yamano Y (2001) Effects of posterior cruciate ligament resection on the tibiofemoral joint gap. Clin Orthop Relat Res 391:210–217

    Article  PubMed  Google Scholar 

  23. Kaneyama R, Otsuka M, Shiratsuchi H, Oinuma K, Miura Y, Tamaki T (2014) Criteria for preserving posterior cruciate ligament depending on intra-operative gap measurement in total knee replacement. Bone Joint Res 3:95–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lachin JM (2004) The role of measurement reliability in clinical trials. Clin Trials 1:553–566

    Article  PubMed  Google Scholar 

  25. Laskin RS (1996) The insall award. Total knee replacement with posterior cruciate ligament retention in patients with a fixed varus deformity. Clin Orthop Relat Res 331:29–34

    Article  PubMed  Google Scholar 

  26. Li G, Zayontz S, Most E, Otterberg E, Sabbag K, Rubash HE (2001) Cruciate-retaining and cruciate-substituting total knee arthroplasty: an in vitro comparison of the kinematics under muscle loads. J Arthroplasty 16:150–156

    Article  CAS  PubMed  Google Scholar 

  27. Liu HG, Zhu W, Zhang ZX (2015) Comparison of outcomes after bilateral simultaneous total knee arthroplasty using posterior-substituting versus cruciate-retaining prostheses. Saudi Med J 36:190–195

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lombardi AV Jr, Berend KR (2006) Posterior cruciate ligament-retaining, posterior stabilized, and varus/valgus posterior stabilized constrained articulations in total knee arthroplasty. Instr Course Lect 55:419–427

    PubMed  Google Scholar 

  29. Lombardi AV Jr, Mallory TH, Fada RA, Hartman JF, Capps SG, Kefauver CA, Adams JB (2001) An algorithm for the posterior cruciate ligament in total knee arthroplasty. Clin Orthop Relat Res 392:75–87

    Article  PubMed  Google Scholar 

  30. Lutzner J, Firmbach FP, Lutzner C, Dexel J, Kirschner S (2015) Similar stability and range of motion between cruciate-retaining and cruciate-substituting ultracongruent insert total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 23:1638–1643

    Article  PubMed  Google Scholar 

  31. Mahoney OM, Kinsey T (2010) Overhang of the femoral component in total knee arthroplasty: risk factors and clinical consequences. J Bone Joint Surg Am 92:1115–1121

    Article  PubMed  Google Scholar 

  32. Matsuzaki T, Matsumoto T, Kubo S, Muratsu H, Matsushita T, Kawakami Y, Ishida K, Oka S, Kuroda R, Kurosaka M (2014) Tibial internal rotation is affected by lateral laxity in cruciate-retaining total knee arthroplasty: an intraoperative kinematic study using a navigation system and offset-type tensor. Knee Surg Sports Traumatol Arthrosc 22:615–620

    Article  PubMed  Google Scholar 

  33. Mihalko WM, Miller C, Krackow KA (2000) Total knee arthroplasty ligament balancing and gap kinematics with posterior cruciate ligament retention and sacrifice. Am J Orthop (Belle Mead NJ) 29:610–616

    CAS  Google Scholar 

  34. Mihalko WM, Whiteside LA (2003) Bone resection and ligament treatment for flexion contracture in knee arthroplasty. Clin Orthop Relat Res 406:141–147

    Article  PubMed  Google Scholar 

  35. Nguyen LC, Lehil MS, Bozic KJ (2015) Trends in total knee arthroplasty implant utilization. J Arthroplasty 30:739–742

    Article  PubMed  Google Scholar 

  36. Pereira DS, Jaffe FF, Ortiguera C (1998) Posterior cruciate ligament-sparing versus posterior cruciate ligament-sacrificing arthroplasty. Functional results using the same prosthesis. J Arthroplasty 13:138–144

    Article  CAS  PubMed  Google Scholar 

  37. Ritter MA, Davis KE, Farris A, Keating EM, Faris PM (2014) The surgeon’s role in relative success of PCL-retaining and PCL-substituting total knee arthroplasty. HSSJ 10:107–115

    Article  Google Scholar 

  38. Sierra RJ, Berry DJ (2008) Surgical technique differences between posterior-substituting and cruciate-retaining total knee arthroplasty. J Arthroplasty 23:20–23

    Article  PubMed  Google Scholar 

  39. Vaidya SV, Ranawat CS, Aroojis A, Laud NS (2000) Anthropometric measurements to design total knee prostheses for the Indian population. J Arthroplasty 15:79–85

    Article  CAS  PubMed  Google Scholar 

  40. Yamakado K, Worland RL, Jessup DE, Diaz-Borjon E, Pinilla R (2003) Tight posterior cruciate ligament in posterior cruciate-retaining total knee arthroplasty: a cause of posteromedial subluxation of the femur. J Arthroplasty 18:570–574

    Article  PubMed  Google Scholar 

  41. Zhang K, Mihalko WM (2012) Posterior cruciate mechanoreceptors in osteoarthritic and cruciate-retaining TKA retrievals: a pilot study. Clin Orthop Relat Res 470:1855–1859

    Article  PubMed  Google Scholar 

  42. Zhang Z, Zhu W, Zhang W (2015) High-flexion posterior-substituting versus cruciate-retaining prosthesis in total knee arthroplasty: functional outcome, range of motion and complication comparison. Arch Orthop Trauma Surg 135:119–124

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Jun Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, D.K., Song, S.J., Kim, K.I. et al. Intraoperative factors affecting conversion from cruciate retaining to cruciate substituting in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 24, 3247–3253 (2016). https://doi.org/10.1007/s00167-015-3971-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-015-3971-3

Keywords

Navigation