Skip to main content
Log in

Tibial internal rotation is affected by lateral laxity in cruciate-retaining total knee arthroplasty: an intraoperative kinematic study using a navigation system and offset-type tensor

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The purpose of this study was to test the hypothesis that intraoperative soft-tissue balance assessed by an offset-type tensor influences post-operative knee kinematics after cruciate-retaining (CR) total knee arthroplasty (TKA).

Methods

The influence of intraoperative soft-tissue balance on knee kinematics in CR-TKA was retrospectively analysed in 30 patients. Intraoperative soft-tissue balance parameters such as varus angle (varus ligament balance), joint component gap (centre gap), and medial and lateral compartment gaps were measured in the navigation system while applying 40-lb joint distraction force at 0°, 10°, 30°, 60°, 90°, and 120° of knee flexion using an offset-type tensor with the patella reduced. Tibial internal rotation and tibial anterior translation were measured as the differences between the values at 60° and 120° of flexion using the navigation system. Correlations between the soft-tissue parameters and post-operative knee kinematics were analysed.

Results

The varus ligament balance was positively correlated with tibial internal rotation at 60° and 90° of flexion (R = 0.54, P < 0.05; R = 0.60, P < 0.01, respectively). Furthermore, the joint component gap was positively correlated with tibial internal rotation at 90° of flexion (R = 0.44, P < 0.05), and the lateral compartment gap was positively correlated with tibial internal rotation at 60°, 90°, and 120° of knee flexion.

Conclusions

The intraoperative varus ligament balance and joint component gap values were factors that predicted post-operative knee kinematics after CR-TKA. Lateral laxity at mid-to-deep knee flexion plays a significant role in tibial internal rotation.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Casino D, Zaffagnini S, Martelli S, Lopomo N, Bignozzi S, Iacono F, Russo A, Marcacci M (2009) Intraoperative evaluation of total knee replacement: kinematic assessment with a navigation system. Knee Surg Sports Traumatol Arthrosc 17(4):369–373

    Article  PubMed  Google Scholar 

  2. Dennis DA, Komistek RD, Mahfouz MR, Haas BD, Stiehl JB (2003) Multicenter determination of in vivo kinematics after total knee arthroplasty. Clin Orthop Relat Res 416:37–57

    Article  PubMed  Google Scholar 

  3. Dennis DA, Mahfouz MR, Komistek RD, Hoff W (2005) In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics. J Biomech 38(2):241–253

    Article  PubMed  Google Scholar 

  4. Faul F, Erdfelder E, Buchner A, Lang AG (2009) Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods 41(4):1149–1160

    Article  PubMed  Google Scholar 

  5. Fujimoto E, Sasashige Y, Masuda Y, Hisatome T, Eguchi A, Masuda T, Sawa M, Nagata Y (2012) Significant effect of the posterior tibial slope and medial/lateral ligament balance on knee flexion in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-012-2059-6

    PubMed  Google Scholar 

  6. Kanekasu K, Banks SA, Honjo S, Nakata O, Kato H (2004) Fluoroscopic analysis of knee arthroplasty kinematics during deep flexion kneeling. J Arthroplasty 19(8):998–1003

    Article  PubMed  Google Scholar 

  7. Kitagawa A, Tsumura N, Chin T, Gamada K, Banks SA, Kurosaka M (2010) In vivo comparison of knee kinematics before and after high-flexion posterior cruciate-retaining total knee arthroplasty. J Arthroplasty 25(6):964–969

    Article  PubMed  Google Scholar 

  8. Kobayashi T, Suzuki M, Sasho T, Nakagawa K, Tsuneizumi Y, Takahashi K (2012) Lateral laxity in flexion increases the postoperative flexion angle in cruciate-retaining total knee arthroplasty. J Arthroplasty 27(2):260–265

    Article  PubMed  Google Scholar 

  9. Lennox DW, Cohn BT, Eschenroeder HC Jr (1988) The effects of inaccurate bone cuts on femoral component position in total knee arthroplasty. Orthopedics 11(2):257–260

    CAS  PubMed  Google Scholar 

  10. Martelli S, Lopomo N, Bignozzi S, Zaffagnini S, Visani A (2007) Validation of a new protocol for navigated intraoperative assessment of knee kinematics. Comput Biol Med 37(6):872–878

    Article  PubMed  Google Scholar 

  11. Massin P, Boyer P, Sabourin M (2012) Less femorotibial rotation and AP translation in deep-dished total knee arthroplasty. An intraoperative kinematic study using navigation. Knee Surg Sports Traumatol Arthrosc 20(9):1714–1719

    Article  PubMed  Google Scholar 

  12. Matsumoto T, Kuroda R, Kubo S, Muratsu H, Mizuno K, Kurosaka M (2009) The intra-operative joint gap in cruciate-retaining compared with posterior-stabilised total knee replacement. J Bone Joint Surg Br 91(4):475–480

    Article  CAS  PubMed  Google Scholar 

  13. Matsumoto T, Muratsu H, Kubo S, Matsushita T, Ishida K, Sasaki H, Oka S, Kurosaka M, Kuroda R (2012) Soft tissue balance using the tibia first gap technique with navigation system in cruciate-retaining total knee arthroplasty. Int Orthop 36(5):975–980

    Article  PubMed Central  PubMed  Google Scholar 

  14. Matsumoto T, Muratsu H, Kubo S, Matsushita T, Kurosaka M, Kuroda R (2012) Intraoperative soft tissue balance reflects minimum 5-year midterm outcomes in cruciate-retaining and posterior-stabilized total knee arthroplasty. J Arthroplasty 27(9):1723–1730

    Article  PubMed  Google Scholar 

  15. Matsumoto T, Muratsu H, Tsumura N, Mizuno K, Kuroda R, Yoshiya S, Kurosaka M (2006) Joint gap kinematics in posterior-stabilized total knee arthroplasty measured by a new tensor with the navigation system. J Biomech Eng 128(6):867–871

    Article  PubMed  Google Scholar 

  16. Most E, Li G, Sultan PG, Park SE, Rubash HE (2005) Kinematic analysis of conventional and high-flexion cruciate-retaining total knee arthroplasties: an in vitro investigation. J Arthroplasty 20(4):529–535

    Article  PubMed  Google Scholar 

  17. Muratsu H, Matsumoto T, Kubo S, Maruo A, Miya H, Kurosaka M, Kuroda R (2010) Femoral component placement changes soft tissue balance in posterior-stabilized total knee arthroplasty. Clin Biomech (Bristol, Avon) 25(9):926–930

    Article  Google Scholar 

  18. Nakamura E, Banks SA, Tanaka A, Sei A, Mizuta H (2009) Three-dimensional tibiofemoral kinematics during deep flexion kneeling in a mobile-bearing total knee arthroplasty. J Arthroplasty 24(7):1120–1124

    Article  PubMed  Google Scholar 

  19. Ploegmakers MJ, Ginsel B, Meijerink HJ, de Rooy JW, de Waal Malefijt MC, Verdonschot N, Banks SA (2010) Physical examination and in vivo kinematics in two posterior cruciate ligament retaining total knee arthroplasty designs. Knee 17(3):204–209

    Article  CAS  PubMed  Google Scholar 

  20. Seon JK, Park JK, Jeong MS, Jung WB, Park KS, Yoon TR, Song EK (2011) Correlation between preoperative and postoperative knee kinematics in total knee arthroplasty using cruciate retaining designs. Int Orthop 35(4):515–520

    Article  PubMed Central  PubMed  Google Scholar 

  21. Siston RA, Giori NJ, Goodman SB, Delp SL (2006) Intraoperative passive kinematics of osteoarthritic knees before and after total knee arthroplasty. J Orthop Res 24(8):1607–1614

    Article  PubMed  Google Scholar 

  22. Takayama K, Matsumoto T, Kubo S, Muratsu H, Ishida K, Matsushita T, Kurosaka M, Kuroda R (2012) Influence of intra-operative joint gaps on post-operative flexion angle in posterior cruciate-retaining total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 20(3):532–537

    Article  PubMed  Google Scholar 

  23. Tamaki M, Tomita T, Watanabe T, Yamazaki T, Yoshikawa H, Sugamoto K (2009) In vivo kinematic analysis of a high-flexion, posterior-stabilized, mobile-bearing knee prosthesis in deep knee bending motion. J Arthroplasty 24(6):972–978

    Article  PubMed  Google Scholar 

  24. Tibesku CO, Daniilidis K, Vieth V, Skwara A, Heindel W, Fuchs-Winkelmann S (2011) Sagittal plane kinematics of fixed- and mobile-bearing total knee replacements. Knee Surg Sports Traumatol Arthrosc 19(9):1488–1495

    Article  PubMed  Google Scholar 

  25. Whiteside LA (2002) Soft tissue balancing: the knee. J Arthroplasty 17(4 Suppl 1):23–27

    Article  PubMed  Google Scholar 

  26. Yoshiya S, Matsui N, Komistek RD, Dennis DA, Mahfouz M, Kurosaka M (2005) In vivo kinematic comparison of posterior cruciate-retaining and posterior stabilized total knee arthroplasties under passive and weight-bearing conditions. J Arthroplasty 20(6):777–783

    Article  PubMed  Google Scholar 

  27. Yue B, Varadarajan KM, Moynihan AL, Liu F, Rubash HE, Li G (2011) Kinematics of medial osteoarthritic knees before and after posterior cruciate ligament retaining total knee arthroplasty. J Orthop Res 29(1):40–46

    Article  PubMed  Google Scholar 

  28. Yue B, Varadarajan KM, Rubash HE, Li G (2012) In vivo function of posterior cruciate ligament before and after posterior cruciate ligament-retaining total knee arthroplasty. Int Orthop 36(7):1387–1392

    Article  PubMed Central  PubMed  Google Scholar 

  29. Zaffagnini S, Bignozzi S, Martelli S, Imakiire N, Lopomo N, Marcacci M (2006) New intraoperative protocol for kinematic evaluation of ACL reconstruction: preliminary results. Knee Surg Sports Traumatol Arthrosc 14(9):811–816

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Janina Tubby for her assistance with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Matsumoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuzaki, T., Matsumoto, T., Kubo, S. et al. Tibial internal rotation is affected by lateral laxity in cruciate-retaining total knee arthroplasty: an intraoperative kinematic study using a navigation system and offset-type tensor. Knee Surg Sports Traumatol Arthrosc 22, 615–620 (2014). https://doi.org/10.1007/s00167-013-2627-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-013-2627-4

Keywords

Navigation