Skip to main content
Log in

Effects of upright weight bearing and the knee flexion angle on patellofemoral indices using magnetic resonance imaging in patients with patellofemoral instability

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

This study analysed the effects of upright weight bearing and the knee flexion angle on patellofemoral indices, determined using magnetic resonance imaging (MRI), in patients with patellofemoral instability (PI).

Methods

Healthy volunteers (control group, n = 9) and PI patients (PI group, n = 16) were scanned in an open-configuration MRI scanner during upright weight bearing and supine non-weight bearing positions at full extension (0° flexion) and at 15°, 30°, and 45° flexion. Patellofemoral indices included the Insall–Salvati Index, Caton–Deschamp Index, and Patellotrochlear Index (PTI) to determine patellar height and the patellar tilt angle (PTA), bisect offset (BO), and the tibial tubercle–trochlear groove (TT–TG) distance to assess patellar rotation and translation with respect to the femur and alignment of the extensor mechanism.

Results

A significant interaction effect of weight bearing by flexion angle was observed for the PTI, PTA, and BO for subjects with PI. At full extension, post hoc pairwise comparisons revealed a significant effect of weight bearing on the indices, with increased patellar height and increased PTA and BO in the PI group. Except for the BO, no such changes were seen in the control group. Independent of weight bearing, flexing the knee caused the PTA, BO, and TT–TG distance to be significantly reduced.

Conclusions

Upright weight bearing and the knee flexion angle affected patellofemoral MRI indices in PI patients, with significantly increased values at full extension. The observations of this study provide a caution to be considered by professionals when treating PI patients. These patients should be evaluated clinically and radiographically at full extension and various flexion angles in context with quadriceps engagement.

Level of evidence

Explorative case–control study, Level III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ali SA, Helmer R, Terk MR (2009) Patella alta: lack of correlation between patellotrochlear cartilage congruence and commonly used patellar height ratios. AJR Am J Roentgenol 193:1361–1366

    Article  PubMed  Google Scholar 

  2. Balcarek P, Jung K, Ammon J, Walde TA, Frosch S, Schuttrumpf JP, Sturmer KM, Frosch KH (2010) Anatomy of lateral patellar instability: trochlear dysplasia and tibial tubercle–trochlear groove distance is more pronounced in women who dislocate the patella. Am J Sports Med 38:2320–2327

    Article  PubMed  Google Scholar 

  3. Balcarek P, Jung K, Frosch KH, Sturmer KM (2011) Value of the tibial tuberosity–trochlear groove distance in patellar instability in the young athlete. Am J Sports Med 39:1756–1761

    Article  PubMed  Google Scholar 

  4. Barnett AJ, Prentice M, Mandalia V, Wakeley CJ, Eldridge JD (2009) Patellar height measurement in trochlear dysplasia. Knee Surg Sports Traumatol Arthrosc 17:1412–1415

    Article  CAS  PubMed  Google Scholar 

  5. Biedert RM, Albrecht S (2006) The patellotrochlear index: a new index for assessing patellar height. Knee Surg Sports Traumatol Arthrosc 14:707–712

    Article  PubMed  Google Scholar 

  6. Brossmann J, Muhle C, Schroder C, Melchert UH, Bull CC, Spielmann RP, Heller M (1993) Patellar tracking patterns during active and passive knee extension: evaluation with motion-triggered cine MR imaging. Radiology 187:205–212

    Article  CAS  PubMed  Google Scholar 

  7. Camathias C, Pagenstert G, Stutz U, Barg A, Muller-Gerbl M, Nowakowski AM (2015) The effect of knee flexion and rotation on the tibial tuberosity–trochlear groove distance. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-015-3508-9

    Google Scholar 

  8. Caton J, Deschamps G, Chambat P, Lerat JL, Dejour H (1982) Patella infera. Apropos of 128 cases. Rev Chir Orthop Reparatrice Appar Mot 68:317–325

    CAS  PubMed  Google Scholar 

  9. Charles MD, Haloman S, Chen L, Ward SR, Fithian D, Afra R (2013) Magnetic resonance imaging-based topographical differences between control and recurrent patellofemoral instability patients. Am J Sports Med 41:374–384

    Article  PubMed  Google Scholar 

  10. Dejour H, Walch G, Nove-Josserand L, Guier C (1994) Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 2:19–26

    Article  CAS  PubMed  Google Scholar 

  11. Dietrich TJ, Betz M, Pfirrmann CW, Koch PP, Fucentese SF (2014) End-stage extension of the knee and its influence on tibial tuberosity–trochlear groove distance (TTTG) in asymptomatic volunteers. Knee Surg Sports Traumatol Arthrosc 22:214–218

    Article  PubMed  Google Scholar 

  12. Dornacher D, Reichel H, Lippacher S (2014) Measurement of tibial tuberosity–trochlear groove distance: evaluation of inter- and intraobserver correlation dependent on the severity of trochlear dysplasia. Knee Surg Sports Traumatol Arthrosc 22:2382–2387

    Article  PubMed  Google Scholar 

  13. Draper CE, Besier TF, Fredericson M, Santos JM, Beaupre GS, Delp SL, Gold GE (2011) Differences in patellofemoral kinematics between weight-bearing and non-weight-bearing conditions in patients with patellofemoral pain. J Orthop Res 29:312–317

    Article  PubMed  Google Scholar 

  14. Draper CE, Besier TF, Santos JM, Jennings F, Fredericson M, Gold GE, Beaupre GS, Delp SL (2009) Using real-time MRI to quantify altered joint kinematics in subjects with patellofemoral pain and to evaluate the effects of a patellar brace or sleeve on joint motion. J Orthop Res 27:571–577

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fithian DC, Paxton EW, Stone ML, Silva P, Davis DK, Elias DA, White LM (2004) Epidemiology and natural history of acute patellar dislocation. Am J Sports Med 32:1114–1121

    Article  PubMed  Google Scholar 

  16. Fulkerson JP, Schutzer SF, Ramsby GR, Bernstein RA (1987) Computerized tomography of the patellofemoral joint before and after lateral release or realignment. Arthroscopy 3:19–24

    Article  CAS  PubMed  Google Scholar 

  17. Fulkerson JP, Shea KP (1990) Disorders of patellofemoral alignment. J Bone Joint Surg Am 72:1424–1429

    Article  CAS  PubMed  Google Scholar 

  18. Fuss FK (1992) Principles and mechanisms of automatic rotation during terminal extension in the human knee joint. J Anat 180(Pt 2):297–304

    PubMed  PubMed Central  Google Scholar 

  19. Hill PF, Vedi V, Williams A, Iwaki H, Pinskerova V, Freeman MA (2000) Tibiofemoral movement 2: the loaded and unloaded living knee studied by MRI. J Bone Joint Surg Br 82:1196–1198

    Article  CAS  PubMed  Google Scholar 

  20. Ho CP, James EW, Surowiec RK, Gatlin CC, Ellman MB, Cram TR, Dornan GJ, LaPrade RF (2015) Systematic technique-dependent differences in CT versus MRI measurement of the tibial tubercle–trochlear groove distance. Am J Sports Med 43:675–682

    Article  PubMed  Google Scholar 

  21. Insall J, Salvati E (1971) Patella position in the normal knee joint. Radiology 101:101–104

    Article  CAS  PubMed  Google Scholar 

  22. Izadpanah K, Weitzel E, Vicari M, Hennig J, Weigel M, Sudkamp NP, Niemeyer P (2014) Influence of knee flexion angle and weight bearing on the tibial tuberosity–trochlear groove (TTTG) distance for evaluation of patellofemoral alignment. Knee Surg Sports Traumatol Arthrosc 22:2655–2661

    Article  PubMed  Google Scholar 

  23. Johal P, Williams A, Wragg P, Hunt D, Gedroyc W (2005) Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using ‘interventional’ MRI. J Biomech 38:269–276

    Article  CAS  PubMed  Google Scholar 

  24. Kim TH, Sobti A, Lee SH, Lee JS, Oh KJ (2014) The effects of weight-bearing conditions on patellofemoral indices in individuals without and with patellofemoral pain syndrome. Skeletal Radiol 43:157–164

    Article  PubMed  Google Scholar 

  25. Miller TT, Staron RB, Feldman F (1996) Patellar height on sagittal MR imaging of the knee. AJR Am J Roentgenol 167:339–341

    Article  CAS  PubMed  Google Scholar 

  26. Pal S, Besier TF, Beaupre GS, Fredericson M, Delp SL, Gold GE (2013) Patellar maltracking is prevalent among patellofemoral pain subjects with patella alta: an upright, weightbearing MRI study. J Orthop Res 31:448–457

    Article  PubMed  Google Scholar 

  27. Pal S, Besier TF, Draper CE, Fredericson M, Gold GE, Beaupre GS, Delp SL (2012) Patellar tilt correlates with vastus lateralis: vastus medialis activation ratio in maltracking patellofemoral pain patients. J Orthop Res 30:927–933

    Article  PubMed  Google Scholar 

  28. Pal S, Draper CE, Fredericson M, Gold GE, Delp SL, Beaupre GS, Besier TF (2011) Patellar maltracking correlates with vastus medialis activation delay in patellofemoral pain patients. Am J Sports Med 39:590–598

    Article  PubMed  Google Scholar 

  29. Piazza SJ, Cavanagh PR (2000) Measurement of the screw-home motion of the knee is sensitive to errors in axis alignment. J Biomech 33:1029–1034

    Article  CAS  PubMed  Google Scholar 

  30. Regalado G, Lintula H, Eskelinen M, Kokki H, Kroger H, Svedstrom E, Vahlberg T, Vaatainen U (2014) Dynamic KINE-MRI in patellofemoral instability in adolescents. Knee Surg Sports Traumatol Arthrosc 22:2795–2802

    Article  PubMed  Google Scholar 

  31. Schoettle PB, Zanetti M, Seifert B, Pfirrmann CW, Fucentese SF, Romero J (2006) The tibial tuberosity–trochlear groove distance; a comparative study between CT and MRI scanning. Knee 13:26–31

    Article  PubMed  Google Scholar 

  32. Seil R, Muller B, Georg T, Kohn D, Rupp S (2000) Reliability and interobserver variability in radiological patellar height ratios. Knee Surg Sports Traumatol Arthrosc 8:231–236

    Article  CAS  PubMed  Google Scholar 

  33. Seitlinger G, Scheurecker G, Hogler R, Labey L, Innocenti B, Hofmann S (2014) The position of the tibia tubercle in 0 degrees–90 degrees flexion: comparing patients with patella dislocation to healthy volunteers. Knee Surg Sports Traumatol Arthrosc 22:2396–2400

    Article  PubMed  Google Scholar 

  34. Shabshin N, Schweitzer ME, Morrison WB, Parker L (2004) MRI criteria for patella alta and baja. Skeletal Radiol 33:445–450

    Article  PubMed  Google Scholar 

  35. Souza RB, Draper CE, Fredericson M, Powers CM (2010) Femur rotation and patellofemoral joint kinematics: a weight-bearing magnetic resonance imaging analysis. J Orthop Sports Phys Ther 40:277–285

    Article  PubMed  Google Scholar 

  36. Steensen RN, Bentley JC, Trinh TQ, Backes JR, Wiltfong RE (2015) The prevalence and combined prevalences of anatomic factors associated with recurrent patellar dislocation: a magnetic resonance imaging study. Am J Sports Med 43:921–927

    Article  PubMed  Google Scholar 

  37. Teng HL, Chen YJ, Powers CM (2014) Predictors of patellar alignment during weight bearing: an examination of patellar height and trochlear geometry. Knee 21:142–146

    Article  PubMed  Google Scholar 

  38. Tennant S, Williams A, Vedi V, Kinmont C, Gedroyc W, Hunt DM (2001) Patello-femoral tracking in the weight-bearing knee: a study of asymptomatic volunteers utilising dynamic magnetic resonance imaging: a preliminary report. Knee Surg Sports Traumatol Arthrosc 9:155–162

    Article  CAS  PubMed  Google Scholar 

  39. Ward SR, Terk MR, Powers CM (2007) Patella alta: association with patellofemoral alignment and changes in contact area during weight-bearing. J Bone Joint Surg Am 89:1749–1755

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the staff of the “Privatpraxis für Upright-Kernspintomographie , Hannover” for their help and support during the study. The programme “Hochschulinterne Leistungsförderung (HiLF)” of Hannover Medical School supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Becher.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becher, C., Fleischer, B., Rase, M. et al. Effects of upright weight bearing and the knee flexion angle on patellofemoral indices using magnetic resonance imaging in patients with patellofemoral instability. Knee Surg Sports Traumatol Arthrosc 25, 2405–2413 (2017). https://doi.org/10.1007/s00167-015-3829-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-015-3829-8

Keywords

Navigation