Skip to main content
Log in

End-stage extension of the knee and its influence on tibial tuberosity-trochlear groove distance (TTTG) in asymptomatic volunteers

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Increased tibial tuberosity-trochlear groove distance (TTTG) is one potential correcting parameter in patients suffering from lateral patellar instability. It was hypothesized that end-stage extension of the knee might influence the TTTG distance on MR images.

Methods

Transverse T1-weighted MR images of the knee were acquired at full extension, 15° and 30° flexion of the knee in 30 asymptomatic volunteers. MRI parameters: slice thickness: 3 mm, matrix: 256 × 384, FOV: 150 × 150 mm. Two observers independently measured the TTTG at all positions.

Results

Mean TTTG for observer 1 was 15.1 ± 3.2 mm at full extension, 10.0 ± 3.5 mm at 15° flexion and 8.1 ± 3.4 mm at 30° flexion. Mean TTTG for observer 2: 14.8 ± 3.3 mm at full extension, 9.4 ± 3.0 mm at 15° flexion, 8.6 ± 3.4 mm at 30° flexion. Mean values were significantly different (p < 0.001) between full extension and 15° as well as 30° flexion for both observers. Mean values were significantly different (p < 0.001) between 15° and 30° for observer 1, but not for observer 2 (n.s.). Interobserver agreement was very good (intraclass correlation coefficient: 0.87–0.88; p < 0.001).

Conclusions

The TTTG increases significantly at the end-stage extension of the knee. Therefore, the comparability of published TTTG values measured on radiographs, CT and MRI at various flexion/extension angles of the knee are limited.

Level of evidence

Development of diagnostic criteria in a consecutive series of patients and a universally applied ‘gold’ standard, Level II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alemparte J, Ekdahl M, Burnier L et al (2007) Patellofemoral evaluation with radiographs and computed tomography scans in 60 knees of asymptomatic subjects. Arthroscopy 23:170–177

    Article  PubMed  Google Scholar 

  2. Balcarek P, Jung K, Ammon J et al (2010) Anatomy of lateral patellar instability: trochlear dysplasia and tibial tubercle-trochlear groove distance is more pronounced in women who dislocate the patella. Am J Sports Med 38:2320–2327

    Article  PubMed  Google Scholar 

  3. Balcarek P, Jung K, Frosch KH et al (2011) Value of the tibial tuberosity-trochlear groove distance in patellar instability in the young athlete. Am J Sports Med 39:1756–1761

    Article  PubMed  Google Scholar 

  4. Bull AM, Kessler O, Alam M et al (2008) Changes in knee kinematics reflect the articular geometry after arthroplasty. Clin Orthop Relat Res 466:2491–2499

    Article  PubMed  Google Scholar 

  5. Cooney AD, Kazi Z, Caplan N et al (2012) The relationship between quadriceps angle and tibial tuberosity-trochlear groove distance in patients with patellar instability. Knee Surg Sports Traumatol Arthrosc 20:2399–2404

    Article  CAS  PubMed  Google Scholar 

  6. Dejour H, Walch G, Nove-Josserand L et al (1994) Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 2:19–26

    Article  CAS  PubMed  Google Scholar 

  7. Diederichs G, Issever AS, Scheffler S (2010) MR imaging of patellar instability: injury patterns and assessment of risk factors. Radiographics 30:961–981

    Article  PubMed  Google Scholar 

  8. Goutallier D, Bernageau J, Lecudonnec B (1978) The measurement of the tibial tuberosity. Patella groove distanced technique and results. Rev Chir Orthop Reparatrice Appar Mot; 64:423–428

    CAS  PubMed  Google Scholar 

  9. Hamai S, Morooka TA, Miura H et al (2009) Knee kinematics in medial osteoarthritis during in vivo weight-bearing activities. J Orthop Res 27:1555–1561

    Article  PubMed  Google Scholar 

  10. Jones RB, Barlett EC, Vainright JR et al (1995) CT determination of tibial tubercle lateralization in patients presenting with anterior knee pain. Skeletal Radiol 24:505–509

    Article  CAS  PubMed  Google Scholar 

  11. Koëter S, Diks MJ, Anderson PG et al (2007) A modified tibial tubercle osteotomy for patellar maltracking: results at two years. J Bone Joint Surg Br 89:180–185

    Article  PubMed  Google Scholar 

  12. Merican AM, Ghosh KM, Iranpour F et al (2011) The effect of femoral component rotation on the kinematics of the tibiofemoral and patellofemoral joints after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 19:1479–1487

    Article  CAS  PubMed  Google Scholar 

  13. Miyanishi K, Nagamine R, Murayama S et al (2000) Tibial tubercle malposition in patellar joint instability: a computed tomograpy study in full extension and at 30 degree flexion. Acta Orthop Scand 71:286–291

    Article  CAS  PubMed  Google Scholar 

  14. Nagamine R, Miura H, Inoue Y et al (1997) Malposition of the tibial tubercle during flexion in knees with patellofemoral arthritis. Skeletal Radiol 26:597–601

    Article  CAS  PubMed  Google Scholar 

  15. Nagao N, Tachibana T, Mizuno K (1998) The rotational angle in osteoarthritic knees. Int Orthop 22:282–287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Pandit S, Frampton C, Stoddart J et al (2011) Magnetic resonance imaging assessment of tibial tuberosity–trochlear groove distance: normal values for males and females. Int Orthop 35:1799–1803

    Article  PubMed Central  PubMed  Google Scholar 

  17. Piazza SJ, Cavanagh PR (2000) Measurement of the screw-home motion of the knee is sensitive to errors in axis alignment. J Biomech 33:1029–1034

    Article  CAS  PubMed  Google Scholar 

  18. Schoettle PB, Zanetti M, Seifert B et al (2006) The tibial tuberosity-trochlear groove distance; a comparative study between CT and MRI scanning. Knee 13:26–31

    Article  PubMed  Google Scholar 

  19. Shakespeare D, Fick D (2005) Patellar instability-can the TT-TG distance be measured clinically? Knee 12:201–204

    Article  PubMed  Google Scholar 

  20. Smith TO, Davies L, Toms AP et al (2010) The reliability and validity of radiological assessment for patellar instability. A systematic review and meta-analysis. Skeletal Radiol 40:399–414

    Article  PubMed  Google Scholar 

  21. Tecklenburg K, Feller JA, Whitehead TS et al (2010) Outcome of surgery for recurrent patellar dislocation based on the distance of the tibial tuberosity to the trochlear groove. J Bone Joint Surg Br 92:1376–1380

    Article  CAS  PubMed  Google Scholar 

  22. Wittstein JR, Bartlett EC, Easterbrook J et al (2006) Magnetic resonance imaging evaluation of patellofemoral malalignment. Arthroscopy 22:643–649

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias J. Dietrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietrich, T.J., Betz, M., Pfirrmann, C.W.A. et al. End-stage extension of the knee and its influence on tibial tuberosity-trochlear groove distance (TTTG) in asymptomatic volunteers. Knee Surg Sports Traumatol Arthrosc 22, 214–218 (2014). https://doi.org/10.1007/s00167-012-2357-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-012-2357-z

Keywords

Navigation