Skip to main content
Log in

Evidence of trochlear dysplasia in patellofemoral arthroplasty designs

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The design of the trochlear compartment is crucial in patellofemoral arthroplasty (PFA), because 78 % of patients with isolated patellofemoral arthritis present concomitant trochlear dysplasia with patellar maltracking and therefore remain predisposed to post-operative patellar subluxation and dislocation. The study investigated whether current PFA implants are designed with anatomic trochlear parameters such as the sulcus angle, lateral facet height and groove orientation.

Methods

Five trochlear components of commercially available PFA implants were scanned, and the generated three-dimensional surfaces were measured using engineering design software. The mediolateral trochlear profiles were plotted at various flexion angles (0°, 15°, 30° and 45°) to deduce the following variables: sulcus angle, height of lateral facet and trochlear groove orientation.

Results

Four specimens had sulcus angle >144° in the 45° of flexion, and all five specimens had sulcus angle >143° in 30° of flexion. Three specimens had a facet <5 mm high through the entire range of early flexion (0°–30°), and two specimens had a facet <5 mm high beyond early flexion (30°–45°). The trochlear groove was oriented laterally in all specimens (range 1.6°–13.5°).

Conclusion

Current PFA trochlear components are not always designed with anatomic parameters, and some models exhibit characteristics of trochlear dysplasia. Surgeons are therefore advised to implant components with a deep sulcus, particularly in patients with history of patellofemoral disorders, and to adapt the surgical technique and extensor mechanism if the component implanted has a shallow sulcus, to ensure normal patellar tracking.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hanslik L (1971) Patellofemoral sliding bearing in total knee prosthesis. Preliminary report on the implantation of a modified McKeever endoprosthesis combined with Young’s alloarthroplasty. Z Orthop Ihre Grenzgeb 109(3):435–440

    PubMed  CAS  Google Scholar 

  2. Hanslik L (1973) Technic of implantation for the McKeever patella endoprosthesis using a new forceps instrumentarium. Z Orthop Ihre Grenzgeb 111(1):103–105

    PubMed  CAS  Google Scholar 

  3. Hanslik L, Scholz J (1978) Retropatellar facet replacement using the McKeever patellar prosthesis (author’s transl). Z Orthop Ihre Grenzgeb 116(1):7–19

    PubMed  CAS  Google Scholar 

  4. McKeever DC (1955) Patellar prosthesis. J Bone Joint Surg Am 37-A(5):1074–1084

    PubMed  CAS  Google Scholar 

  5. Blazina ME, Fox JM, Del Pizzo W, Broukhim B, Ivey FM (1979) Patellofemoral replacement. Clin Orthop Relat Res 144:98–102

    PubMed  Google Scholar 

  6. Lubinus HH (1979) Patella glide bearing total replacement. Orthopedics 2:119–127

    PubMed  CAS  Google Scholar 

  7. Amis AA, Senavongse W, Darcy P (2005) Biomechanics of patellofemoral joint prostheses. Clin Orthop Relat Res 436:20–29

    Article  PubMed  Google Scholar 

  8. Dy CJ, Franco N, Ma Y, Mazumdar M, McCarthy MM, Gonzalez Della Valle A (2012) Complications after patello-femoral versus total knee replacement in the treatment of isolated patello-femoral osteoarthritis. A meta-analysis. Knee Surg Sports Traumatol Arthrosc 20(11):2174–2190

    Article  PubMed  CAS  Google Scholar 

  9. Lonner JH (2008) Patellofemoral arthroplasty: the impact of design on outcomes. Orthop Clin N Am 39(3):347–354

    Article  Google Scholar 

  10. Lonner JH (2010) Patellofemoral arthroplasty. Orthopedics 33(9):653

    PubMed  Google Scholar 

  11. Mont MA, Johnson AJ, Naziri Q, Kolisek FR, Leadbetter WB (2012) Patellofemoral arthroplasty: 7-year mean follow-up. J Arthroplasty 27(3):358–361

    Article  PubMed  Google Scholar 

  12. Lustig S, Magnussen RA, Dahm DL, Parker D (2012) Patellofemoral arthroplasty, where are we today? Knee Surg Sports Traumatol Arthrosc 20(7):1216–1226

    Article  PubMed  Google Scholar 

  13. Monk AP, van Duren BH, Pandit H, Shakespeare D, Murray DW, Gill HS (2011) In vivo sagittal plane kinematics of the FPV patellofemoral replacement. Knee Surg Sports Traumatol Arthrosc 20(6):1104–1109

    Article  PubMed  Google Scholar 

  14. Leadbetter WB, Kolisek FR, Levitt RL, Brooker AF, Zietz P, Marker DR, Bonutti PM, Mont MA (2009) Patellofemoral arthroplasty: a multi-centre study with minimum 2-year follow-up. Int Orthop 33(6):1597–1601

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lonner JH (2007) Patellofemoral arthroplasty. J Am Acad Orthop Surg 15(8):495–506

    PubMed  Google Scholar 

  16. Lonner JH (2004) Patellofemoral arthroplasty: pros, cons, and design considerations. Clin Orthop Relat Res 428:158–165

    Article  PubMed  Google Scholar 

  17. Sisto DJ, Sarin VK (2008) Patellofemoral arthroplasty with a customized trochlear prosthesis. Orthop Clin N Am 39(3):355–362

    Article  Google Scholar 

  18. Merchant AC (1997) Femoral sulcus angle measurements. Am J Orthop 26(12):820–822

    PubMed  CAS  Google Scholar 

  19. Merchant AC, Mercer RL, Jacobsen RH, Cool CR (1974) Roentgenographic analysis of patellofemoral congruence. J Bone Joint Surg Am 56(7):1391–1396

    PubMed  CAS  Google Scholar 

  20. Brattström H (1964) Shape of the intercondylar groove normally and in recurrent dislocation of patella. A clinical and X-ray-anatomical investigation. Acta Orthop Scand Suppl 68:1–148

    Google Scholar 

  21. Mulligan ME, Jones ED Jr (1997) Femoral sulcus angle measurements. Am J Orthop 26(8):541–543

    PubMed  CAS  Google Scholar 

  22. Tecklenburg K, Dejour D, Hoser C, Fink C (2006) Bony and cartilaginous anatomy of the patellofemoral joint. Knee Surg Sports Traumatol Arthrosc 14(3):235–240

    Article  PubMed  CAS  Google Scholar 

  23. Davies AP, Costa ML, Shepstone L, Glasgow MM, Donell S (2000) The sulcus angle and malalignment of the extensor mechanism of the knee. J Bone Joint Surg Br 82(8):1162–1166

    Article  PubMed  CAS  Google Scholar 

  24. Shih YF, Bull AM, Amis AA (2004) The cartilaginous and osseous geometry of the femoral trochlear groove. Knee Surg Sports Traumatol Arthrosc 12(4):300–306

    Article  PubMed  Google Scholar 

  25. Dejour D, Ntagiopoulos PG, Saffarini M (2012) Evidence of trochlear dysplasia in femoral component designs. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-012-2268-z

    Google Scholar 

  26. Merchant AC (2005) A modular prosthesis for patellofemoral arthroplasty: design and initial results. Clin Orthop Relat Res 436:40–46

    Article  PubMed  Google Scholar 

  27. Dejour D, Allain J (2003) L’arthrose fémoropatéllaire isolée: Histoire naturelle (Isolated patellofemoral osteoarthritis: natural history and clinical presentation), vol 1S. In: Symposim—SoFCOT 2003, pp 89–93

  28. Varadarajan KM, Freiberg AA, Gill TJ, Rubash HE, Li G (2010) Relationship between three-dimensional geometry of the trochlear groove and in vivo patellar tracking during weight-bearing knee flexion. J Biomech Eng 132(6):061008

    Article  PubMed  Google Scholar 

  29. Varadarajan KM, Rubash HE, Li G (2011) Are current total knee arthroplasty implants designed to restore normal trochlear groove anatomy? J Arthroplasty 26(2):274–281

    Article  PubMed  Google Scholar 

  30. Mulford JS, Wakeley CJ, Eldridge JD (2007) Assessment and management of chronic patellofemoral instability. J Bone Joint Surg Br 89(6):709–716

    Article  PubMed  CAS  Google Scholar 

  31. Senavongse W, Amis AA (2005) The effects of articular, retinacular, or muscular deficiencies on patellofemoral joint stability: a biomechanical study in vitro. J Bone Joint Surg Br 87(4):577–582

    Article  PubMed  CAS  Google Scholar 

  32. Arendt E (2005) Anatomy and malalignment of the patellofemoral joint: its relation to patellofemoral arthrosis. Clin Orthop Relat Res 436:71–75

    Article  PubMed  Google Scholar 

  33. Dejour H, Walch G, Nove-Josserand L, Guier C (1994) Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 2(1):19–26

    Article  PubMed  CAS  Google Scholar 

  34. Amis AA (2007) Current concepts on anatomy and biomechanics of patellar stability. Sports Med Arthrosc 15(2):48–56

    Article  PubMed  Google Scholar 

  35. Bicos J, Fulkerson JP, Amis A (2007) Current concepts review: the medial patellofemoral ligament. Am J Sports Med 35(3):484–492

    Article  PubMed  Google Scholar 

  36. Kulkarni SK, Freeman MA, Poal-Manresa JC, Asencio JI, Rodriguez JJ (2001) The patello-femoral joint in total knee arthroplasty: is the design of the trochlea the critical factor? Knee Surg Sports Traumatol Arthrosc 9(Suppl 1):S8–S12

    Article  PubMed  Google Scholar 

  37. Barink M, Van de Groes S, Verdonschot N, De Waal Malefijt M (2006) The difference in trochlear orientation between the natural knee and current prosthetic knee designs; towards a truly physiological prosthetic groove orientation. J Biomech 39(9):1708–1715

    Article  PubMed  CAS  Google Scholar 

  38. Indelli PF, Marcucci M, Cariello D, Poli P, Innocenti M (2012) Contemporary femoral designs in total knee arthroplasty: effects on the patello-femoral congruence. Int Orthop 36(6):1167–1173

    Article  PubMed  PubMed Central  Google Scholar 

  39. Iranpour F, Merican AM, Dandachli W, Amis AA, Cobb JP (2010) The geometry of the trochlear groove. Clin Orthop Relat Res 468(3):782–788

    Article  PubMed  PubMed Central  Google Scholar 

  40. Varadarajan KM, Gill TJ, Freiberg AA, Rubash HE, Li G (2009) Gender differences in trochlear groove orientation and rotational kinematics of human knees. J Orthop Res 27(7):871–878

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yoshioka Y, Siu D, Cooke TD (1987) The anatomy and functional axes of the femur. J Bone Joint Surg Am 69(6):873–880

    PubMed  CAS  Google Scholar 

  42. Eckhoff DG, Burke BJ, Dwyer TF, Pring ME, Spitzer VM, VanGerwen DP (1996) The Ranawat Award. Sulcus morphology of the distal femur. Clin Orthop Relat Res 331:23–28

    Article  PubMed  Google Scholar 

  43. Eckhoff DG, Montgomery WK, Stamm ER, Kilcoyne RF (1996) Location of the femoral sulcus in the osteoarthritic knee. J Arthroplasty 11(2):163–165

    Article  PubMed  CAS  Google Scholar 

  44. Barink M, van de Groes S, Verdonschot N, De Waal Malefijt M (2003) The trochlea is bilinear and oriented medially. Clin Orthop Relat Res 411:288–295

    Article  PubMed  Google Scholar 

  45. Feinstein WK, Noble PC, Kamaric E, Tullos HS (1996) Anatomic alignment of the patellar groove. Clin Orthop Relat Res 331:64–73

    Article  PubMed  Google Scholar 

  46. Leadbetter WB (2008) Patellofemoral arthroplasty in the treatment of patellofemoral arthritis: rationale and outcomes in younger patients. Orthop Clin North Am 39(3):363–380

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

D.D. receives royalties from Tornier SA. M.S., P.G.N., G.D. and B.L.N. have not included a conflict of interest disclosure statement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis G. Ntagiopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saffarini, M., Ntagiopoulos, P.G., Demey, G. et al. Evidence of trochlear dysplasia in patellofemoral arthroplasty designs. Knee Surg Sports Traumatol Arthrosc 22, 2574–2581 (2014). https://doi.org/10.1007/s00167-014-2967-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-014-2967-8

Keywords

Navigation