Skip to main content
Log in

The cartilaginous and osseous geometry of the femoral trochlear groove

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Photography was used to study the geometry of the cartilaginous and osseous contours of the distal femur and the orientation of the trochlear groove in 9 fresh-frozen and 24 embalmed knees. The sulcus angle (146.1°±5.5°) decreased from 0° to 50° of femoral flexion then increased afterwards. The maximum slope of the lateral femoral condyle (20.2°±5.2°) also decreased with flexion. Both the sulcus angle (p =0.0007) and maximum slope (p =0.0001) were larger at 0° than they were for 60° cartilaginous surfaces. The lateral femoral condylar height decreased, whilst the medial femoral condylar height increased as the flexion increased. The femoral groove was midway between the two femoral epicondyles (49.5±3.9%), but deviated laterally as the flexion angle increased. The groove axis deviated distally and laterally from the femoral anatomical axis for both cartilaginous and bony surfaces, and the angle between the groove and anatomical axes was similar for both cartilaginous (19.1°) and osseous (16.8°) surfaces. Articular cartilage is not well represented on radiography yet it had a significant effect on the distal femoral geometry, and should be taken into account when evaluating the patellofemoral joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ahmed AM, Duncan NA, Tanzer M (1999) In vitro measurement of the tracking pattern of the human patella. J Biomech Eng 121:222–228

    CAS  PubMed  Google Scholar 

  2. Berger RA, Rubash HE, Seel MJ, Thompson WH, Crossett LS (1993) Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis. Clin Orthop 286:40–47

    PubMed  Google Scholar 

  3. Brattstrom H (1964) Shape of the intercondylar groove normally and in recurrent dislocation of patella. A clinical and X-ray-anatomical investigation. Acta Orthop Scand Suppl 68:1–148

    Google Scholar 

  4. Brossmann J, Muhle C, Schroder C, Melchert UH, Bull CC, Spielmann RP, Heller M (1993) Patellar tracking patterns during active and passive knee extension: evaluation with motion-triggered cine MR imaging. Radiology 187:205–212

    CAS  PubMed  Google Scholar 

  5. Bull AMJ, Katchburian MV, Shih Y-F, Amis AA (2002) Standardisation of the description of patellofemoral motion and comparison between techniques. Knee Surg Sports Traumatol Arthrosc 10:184–193.

    Article  CAS  PubMed  Google Scholar 

  6. Carson WG Jr, James SL, Larson RL, Singer KM, Winternitz WW (1984) Patellofemoral disorders: physical and radiographic evaluation. Part II: Radiographic examination. Clin Orthop 185:178–186

    PubMed  Google Scholar 

  7. Dejour H, Walch G, Nove-Josserand L, Guier C (1994) Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 2:19–26

    CAS  PubMed  Google Scholar 

  8. Eckhoff DG, Burke BJ, Dwyer TF, Pring ME, Spitzer VM, VanGerwen DP (1996) Sulcus morphology of the distal femur. Clin Orthop 331:23–28

    PubMed  Google Scholar 

  9. Eckhoff DG, Montgomery WK, Stamm ER, Kilcoyne RF (1996) Location of the femoral sulcus in the osteoarthritic knee. J Arthroplasty 11:163–165

    PubMed  Google Scholar 

  10. Feinstein WK, Noble PC, Kamaric E, Tullos HS (1996) Anatomic alignment of the patellar groove. Clin Orthop 331:64–73

    PubMed  Google Scholar 

  11. Goh JC, Lee PY, Bose K (1995) A cadaver study of the function of the oblique part of vastus medialis. J Bone Joint Surg Br 77:225–231

    CAS  PubMed  Google Scholar 

  12. Griffin FM, Math K, Scuderi GR, Insall JN and Poilvache PL (2000) Anatomy of the epicondyles of the distal femur: MRI analysis of normal knees. J Arthroplasty 15:354–359

    CAS  PubMed  Google Scholar 

  13. Harper WM, McCaskie AW, Harding ML, Finlay DBL (1995) Anterior knee pain: the use of computerized tomography to assess the results of tibial tubercle transfer. Knee 2:207–210

    Article  Google Scholar 

  14. Heegaard J, Leyvraz PF, Curnier A, Rakotomanana L, Huiskes R (1995) The biomechanics of the human patella during passive knee flexion. J Biomech 28:1265–1279

    Article  CAS  PubMed  Google Scholar 

  15. Hollister AM, Jatana S, Singh AK, Sullivan WW, Lupichuk AG (1993) The axes of rotation of the knee. Clin Orthop 290:259–268

    PubMed  Google Scholar 

  16. Hsu HC, Luo ZP, Rand JA, An KN (1997) Influence of lateral release on patellar tracking and patellofemoral contact characteristics after total knee arthroplasty. J Arthroplasty 12:74–83

    CAS  PubMed  Google Scholar 

  17. Koh TJ, Grabiner MD, De Swart RJ (1992) In vivo tracking of the human patella. J Biomech 25:637–643

    CAS  PubMed  Google Scholar 

  18. Koskinen SK, Kujala UM (1992) Patellofemoral relationships and distal insertion of the vastus medialis muscle: a magnetic resonance imaging study in nonsymptomatic subjects and in patients with patellar dislocation. Arthroscopy 8:465–468

    CAS  PubMed  Google Scholar 

  19. Koskinen SK, Taimela S, Nelimarkka O, Komu ME, Kujala UM (1993) Magnetic resonance imaging of patellofemoral relationships. Skeletal Radiol 22:403–410

    CAS  PubMed  Google Scholar 

  20. Kujala UM, Osterman K, Kormano MJ, Komu ME, Schlenzka D (1989) Patellar motion analyzed by magnetic resonance imaging. Acta Orthop Scand 60:13–16

    CAS  PubMed  Google Scholar 

  21. Kwak SD, Ahmad CS, Gardner TR, Wu H, Grelsamer RP, Henry JH, Blankevoort L, Ateshian GA, Mow VC (1996) The iliotibial band has a small but significant effect on knee kinematics and articular contact. Trans Orthop Res Soc 21:718

    Google Scholar 

  22. Lafortune MA (1984) The use of intra-cortical pins to measure the motion of the knee joint during walking. Thesis, Pennsylvania State University

  23. Laurin CA, Dussault R, Levesque HP (1979) The tangential X-ray investigation of the patellofemoral joint: X-ray technique, diagnostic criteria and their interpretation. Clin Orthop 144:16–26

    PubMed  Google Scholar 

  24. Mantas JP, Bloebaum RD, Skedros JG, Hofmann AA (1992) Implications of reference axes used for rotational alignment of the femoral component in primary and revision knee arthroplasty. J Arthroplasty 7:531–535

    PubMed  Google Scholar 

  25. Minkoff J, Fein L (1989) The role of radiography in the evaluation and treatment of common anarthrotic disorders of the patellofemoral joint. Clin Sports Med 8:203–260

    CAS  PubMed  Google Scholar 

  26. Nagamine R, Otani T, White SE, McCarthy DS, Whiteside LA (1995) Patellar tracking measurement in the normal knee. J Orthop Res 13:115–122

    CAS  PubMed  Google Scholar 

  27. Perrild C, Hejgaard N, Rosenklint A (1982) Chondromalacia patellae: a radiographic study of the femoropatellar joint. Acta Orthop Scand 53:131–134

    CAS  PubMed  Google Scholar 

  28. Pinar H, Akseki D, Genc I, Karaoglan O (1994) Kinematic and dynamic axial computerized tomography of the normal patellofemoral joint. Knee Surg Sports Traumatol Arthrosc 2:27–30

    CAS  PubMed  Google Scholar 

  29. Pinar H, Akseki D, Karaoglan O, Genc I (1994) Kinematic and dynamic axial computed tomography of the patello-femoral joint in patients with anterior knee pain. Knee Surg Sports Traumatol Arthrosc 2:170–173

    CAS  PubMed  Google Scholar 

  30. Poilvache PL, Insall JN, Scuderi GR, Font RD (1996) Rotational landmarks and sizing of the distal femur in total knee arthroplasty. Clin Orthop 331:35–46

    PubMed  Google Scholar 

  31. Portney LG, Watkins MP (1993) Foundations of clinical research. Applications to practice. Appleton & Lange, Norwalk

  32. Reider B, Marshall JL, Ring B (1981) Patellar tracking. Clin Orthop 157:143–148

    PubMed  Google Scholar 

  33. Sakai N, Luo ZP, Rand, JA, An KN (1996) Quadriceps forces and patellar motion in the anatomical model of the patellofemoral joint. Knee 3:1–7

    Google Scholar 

  34. Schutzer SF, Ramsby GR, Fulkerson JP (1986) The evaluation of patellofemoral pain using computerized tomography. A preliminary study. Clin Orthop 204:286–293

    PubMed  Google Scholar 

  35. Sheehan FT, Zajac FE, Drace JE (1999) In vivo tracking of the human patella using cine phase contrast magnetic resonance imaging. J Biomech Eng 121:650–656

    CAS  PubMed  Google Scholar 

  36. Siu D, Rudan J, Wevers HW, Griffiths P (1996) Femoral articular shape and geometry. A three-dimensional computerized analysis of the knee. J Arthroplasty 11:166–173

    CAS  PubMed  Google Scholar 

  37. Staubli HU, Durrenmatt U, Porcellini B, Rauschning W (1999) Anatomy and surface geometry of the patellofemoral joint in the axial plane. J Bone Joint Surg Br 81:452–458

    PubMed  Google Scholar 

  38. Tennant S, Williams A, Vedi V, Kinmont C, Gedroyc W, Hunt DM (2001) Patello-femoral tracking in the weight-bearing knee: a study of asymptomatic volunteers utilising dynamic magnetic resonance imaging: a preliminary report. Knee Surg Sports Traumatol Arthrosc 9:155–162

    Article  CAS  PubMed  Google Scholar 

  39. Vaara P, Marttinen E, Peltonen J (1997) Ultrasonography of the patellofemoral joint in diastrophic dysplasia. J Pediatr Orthop 17:512–515

    Article  CAS  PubMed  Google Scholar 

  40. Vahasarja V, Lanning P, Kinnunen P, Serlo W (1995) Technical report: radiological evaluation of patellar malalignment using a new frame for axial imaging of the patellae. Clin Radiol 50:56–58

    CAS  PubMed  Google Scholar 

  41. Vahasarja V, Lanning P, Lahde S, Serlo W (1996) Axial radiography or CT in the measurement of patellofemoral malalignment indices in children and adolescents? Clin Radiol 51:639–643

    CAS  PubMed  Google Scholar 

  42. Wiberg G (1941) Roentgenographic and anatomic studies on the femoropatellar joint. Acta Orthop Scand 12:319–410

    Google Scholar 

  43. Yoshioka Y, Siu D, Cooke TD (1987) The anatomy and functional axes of the femur. J Bone Joint Surg Am 69:873–880

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Y.-F.S. was supported by a scholarship from the Ministry of Education, Taiwan. A.M.J.B. is supported by the Arthritis Research Campaign. We also thank Dr. D. Watt and Dr. M. Guan of the Anatomy Facility at Charing Cross Hospital, Imperial College School of Medicine for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew A. Amis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shih, YF., Bull, A.M.J. & Amis, A.A. The cartilaginous and osseous geometry of the femoral trochlear groove. Knee Surg Sports Traumatol Arthrosc 12, 300–306 (2004). https://doi.org/10.1007/s00167-003-0414-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-003-0414-3

Keywords

Navigation