Skip to main content
Log in

Effect of an UHMWPE patellar component on stress fields in the patella: a finite element analysis

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

An increased stress in the patella due to the implantation of a patellar button may also be another potential source of pain in total knee arthroplasty patients. This study assessed the location inside the patella having largest stress change after implantation of an ultra high molecular polyethylene patella button. Finite elements models of the patellae before and after implantation of patellar button were created. Experimentally determined spring constants of muscles and ligaments, and patellofemoral contacting loads were applied to the models at 30°, 60°, and 90° of knee flexion. The Von Mises stress of the intact patella decreased with increased knee flexion, while that of implanted patella increased. Also, the stress range in the implanted patella was 3~9 times higher than in the intact one. The highly stressed region of the intact patella moved proximally with higher knee flexion angles, while that of the implanted model stayed near the central anterior patella. At 90° of knee flexion, the stress in the anterodistal patella increased considerably after implantation of a patella button so that the anterodistal patella may be susceptible to be painful source after the total knee replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ahmed AM, Burke DL, Hyder A (1987) Force analysis of the patellar mechanism. J Orthop Res 5(1):69–85

    Article  PubMed  CAS  Google Scholar 

  2. Buff HU, Jones LC, Hungerford DS (1988) Experimental determination of forces transmitted through the patello-femoral joint. J Biomech 21(1):17–23

    Article  PubMed  CAS  Google Scholar 

  3. Waters TS, Bentley G (2003) Patellar resurfacing in total knee arthroplasty. A prospective, randomized study. J Bone Joint Surg Am 85-A(2):212–217

    PubMed  CAS  Google Scholar 

  4. Wood DJ, Smith AJ, Collopy D, White B, Brankov B, Bulsara MK (2002) Patellar resurfacing in total knee arthroplasty: a prospective, randomized trial. J Bone Joint Surg Am 84-A(2):187–193

    PubMed  Google Scholar 

  5. Thompson NW, Ruiz AL, Breslin E, Beverland DE (2001) Total knee arthroplasty without patellar resurfacing in isolated patellofemoral osteoarthritis. J Arthroplasty 16(5):607–612

    Article  PubMed  CAS  Google Scholar 

  6. Joensen AM, Hahn T, Gelineck J, Overvad K, Ingemann-Hansen T (2001) Articular cartilage lesions and anterior knee pain. Scand J Med Sci Sports 11(2):115–119

    Article  PubMed  CAS  Google Scholar 

  7. Besier TF, Draper CE, Gold GE, Beaupre GS, Delp SL (2005) Patellofemoral joint contact area increases with knee flexion and weight-bearing. J Orthop Res 23(2):345–350

    Article  PubMed  Google Scholar 

  8. Besier TF, Gold GE, Beaupre GS, Delp SL (2005) A modeling framework to estimate patellofemoral joint cartilage stress in vivo. Med Sci Sports Exerc 37(11):1924–1930

    Article  PubMed  Google Scholar 

  9. Gold GE, Besier TF, Draper CE, Asakawa DS, Delp SL, Beaupre GS (2004) Weight-bearing MRI of patellofemoral joint cartilage contact area. J Magn Reson Imaging 20(3):526–530

    Article  PubMed  Google Scholar 

  10. Huberti HH, Hayes WC (1984) Patellofemoral contact pressures. The influence of q-angle and tendofemoral contact. J Bone Joint Surg Am 66(5):715–724

    PubMed  CAS  Google Scholar 

  11. Lee TQ, Gerken AP, Glaser FE, Kim WC, Anzel SH (1997) Patellofemoral joint kinematics and contact pressures in total knee arthroplasty. Clin Orthop Relat Res 340:257–266

    Article  PubMed  Google Scholar 

  12. McNamara JL, Collier JP, Mayor MB, Jensen RE (1994) A comparison of contact pressures in tibial and patellar total knee components before and after service in vivo. Clin Orthop Relat Res 299:104–113

    Google Scholar 

  13. Swart RJd, Kambic HE, Manning T, Stulberg BN (1993) The effect of conformity on contact area and stresses in ultra-high molecular weight polyethylene patellar components of total knee arthroplasties. In: Transactions of the 19th annual metting of the society for biomaterials, Birmingham, AL:12

  14. Takeuchi T, Lathi VK, Khan AM, Hayes WC (1995) Patellofemoral contact pressures exceed the compressive yield strength of UHMWPE in total knee arthroplasties. J Arthroplasty 10(3):363–368

    Article  PubMed  CAS  Google Scholar 

  15. Singerman R, Berilla J, Kotzar G, Daly J, Davy DT (1994) A six-degree-of-freedom transducer for in vitro measurement of patellofemoral contact forces. J Biomech 27(2):233–238

    Article  PubMed  CAS  Google Scholar 

  16. Heegaard JH, Leyvraz PF, Curnier A, Rakotomanana L, Huiskes R (1995) The biomechanics of the human patella during passive knee flexion. J Biomech 28(11):1265–1279

    Article  PubMed  CAS  Google Scholar 

  17. Keyak JH, Meagher JM, Skinner HB, Mote CD Jr (1990) Automated three-dimensional finite element modelling of bone: a new method. J Biomed Eng 12(5):389–397

    Article  PubMed  CAS  Google Scholar 

  18. Keyak JH, Rossi SA, Jones KA, Skinner HB (1998) Prediction of femoral fracture load using automated finite element modeling. J Biomech 31(2):125–133

    Article  PubMed  CAS  Google Scholar 

  19. Keyak JH, Skinner HB (1992) Three-dimensional finite element modelling of bone: effects of element size. J Biomed Eng 14(6):483–489

    Article  PubMed  CAS  Google Scholar 

  20. Lee IY, Skinner HB, Keyak JH (1994) Effects of variation of prosthesis size on cement stress at the tip of a femoral implant. J Biomed Mater Res 28(9):1055–1060

    Article  PubMed  CAS  Google Scholar 

  21. Mottershead JE, Edwards PD, Whelan MP, English RG (1996) Finite element analysis of a total knee replacement by using Gauss point contact constraints. Proc Inst Mech Eng [H] 210(1):51–63

    CAS  Google Scholar 

  22. Staubli HU, Schatzmann L, Brunner P, Rincon L, Nolte LP (1996) Quadriceps tendon and patellar ligament: cryosectional anatomy and structural properties in young adults. Knee Surg Sports Traumatol Arthrosc 4(2):100–110

    Article  PubMed  CAS  Google Scholar 

  23. Keyak JH, Rossi SA (2000) Prediction of femoral fracture load using finite element models: an examination of stress- and strain-based failure theories. J Biomech 33(2):209–214

    Article  PubMed  CAS  Google Scholar 

  24. Lee TQ, Budoff JE, Glaser FE (1999) Patellar component positioning in total knee arthroplasty. Clin Orthop Relat Res 366:274–281

    Article  PubMed  Google Scholar 

  25. Heegaard JH, Leyvraz PF, Hovey CB (2001) A computer model to simulate patellar biomechanics following total knee replacement: the effects of femoral component alignment. Clin Biomech (Bristol, Avon) 16(5):415–423

    Article  CAS  Google Scholar 

  26. Fernandez JW, Hunter PJ (2005) An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool. Biomech Model Mechanobiol 4(1):20–38

    Article  PubMed  CAS  Google Scholar 

  27. Komistek RD, Dennis DA, Mabe JA, Walker SA (2000) An in vivo determination of patellofemoral contact positions. Clin Biomech (Bristol, Avon) 15(1):29–36

    Article  CAS  Google Scholar 

  28. Omori G, Koga Y, Bechtold JE, Gustilo RB, Nakabe N, Sasagawa K, Hara T, Takahashi HE (1997) Contact pressure and three-dimensional tracking of unresurfaced patella in total knee arthroplasty. The Knee 4(1):15–21

    Article  Google Scholar 

  29. Pellengahr C, Maier M, Müller PE, Dürr HR, Schulz C, Zysk S, Trouillier H, Lindhorst E, Jansson V, Refior HJ (2002) Surgical and anatomic parameters influencing femoropatellar pain in total knee arthroplasty. Eur J Trauma 28(4):242–426

    Article  Google Scholar 

  30. Smith AJ, Wood DJ, Li MG (2008) Total knee replacement with and without patellar resurfacing: a prospective, randomised trial using the profix total knee system. J Bone Joint Surg Br 90(1):43–49

    PubMed  CAS  Google Scholar 

  31. Berti L, Benedetti MG, Ensini A, Catani F, Giannini S (2006) Clinical and biomechanical assessment of patella resurfacing in total knee arthroplasty. Clin Biomech (Bristol, Avon) 21(6):610–616

    Article  Google Scholar 

  32. Pakos EE, Ntzani EE, Trikalinos TA (2005) Patellar resurfacing in total knee arthroplasty A meta-analysis. J Bone Joint Surg Am 87(7):1438–1445

    Article  PubMed  Google Scholar 

  33. Parvizi J, Rapuri VR, Saleh KJ, Kuskowski MA, Sharkey PF, Mont MA (2005) Failure to resurface the patella during total knee arthroplasty may result in more knee pain and secondary surgery. Clin Orthop Relat Res 438:191–196

    Article  PubMed  Google Scholar 

  34. Nizard RS, Biau D, Porcher R, Ravaud P, Bizot P, Hannouche D, Sedel L (2005) A meta-analysis of patellar replacement in total knee arthroplasty. Clin Orthop Relat Res (432):196–203

  35. Bourne RB, Burnett RS (2004) The consequences of not resurfacing the patella. Clin Orthop Relat Res 428:166–169

    Google Scholar 

  36. Burnett RS, Boone JL, McCarthy KP, Rosenzweig S, Barrack RL (2007) A prospective randomized clinical trial of patellar resurfacing and nonresurfacing in bilateral TKA. Clin Orthop Relat Res 464:65–72

    PubMed  CAS  Google Scholar 

  37. Smith AJ, Lloyd DG, Wood DJ (2006) A kinematic and kinetic analysis of walking after total knee arthroplasty with and without patellar resurfacing. Clin Biomech (Bristol, Avon) 21(4):379–386

    Article  Google Scholar 

  38. Baldwin JL, House CK (2005) Anatomic dimensions of the patella measured during total knee arthroplasty. J Arthroplasty 20(2):250–257

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was partially supported by a research grant from the School of Medical System Engineering (SMSE) and the Institute of Medical System Engineering (iMSE), GIST, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeon Soo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Y.S., Lee, T.Q. & Keyak, J.H. Effect of an UHMWPE patellar component on stress fields in the patella: a finite element analysis. Knee Surg Sports Traumatol Arthr 17, 71–82 (2009). https://doi.org/10.1007/s00167-008-0628-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-008-0628-5

Keywords

Navigation