Skip to main content
Log in

Stress distribution of the patellofemoral joint in the anatomic V-shape and curved dome-shape femoral component: a comparison of resurfaced and unresurfaced patellae

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Whether to resurface the patella in knee replacement remains a controversial issue. The geometrical design of the trochlear groove in the femoral component could play an important role in determining the stress distribution on the patellofemoral joint, but this has not been sufficiently reported on. This study attempted to determine the effect of implant design on contact mechanics by means of a finite element method.

Methods

Two designs, an anatomical V-shape design (VSD) and a dome-shape design (DSD), for the anterior trochlear surface in a contemporary femoral component were chosen for examining the contact characteristics. The use and absence of patella resurfacing was simulated. The stress and strain distribution on the patellar bone and the polyethylene component were calculated for comparison.

Results

Without patellar resurfacing, the maximal compressive strain in the patellar bone in the VSD model was about 20 % lower than the DSD model. On the other hand, with resurfacing, the maximal strain for the VSD model was 13.3 % greater than for DSD. Uneven stress distribution at the bone–implant interface was also noted for the two designs.

Conclusion

The femoral component with a V-shape trochlear groove reduced the compressive strain on the unresurfaced patella. If resurfacing the patella, the femoral component with a curved domed-shape design might reduce the strain in the remaining patellar bone. Uneven stress could occur at the bone–implant interface, so design modifications for improving fixation strength and medialization of the patellar button would be helpful in reducing the risk of peg fracture or loosening.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Amis AA (2007) Current concepts on anatomy and biomechanics of patellar stability. Sports Med Arthros Rev 15(2):48–56

    Article  Google Scholar 

  2. Anderson TL(2005) Fracture mechanics: fundamentals and applications, 3rd edn. CRC Press, Talor & Francis group, New York

    Google Scholar 

  3. Barrack RL, Bertot AJ, Wolfe MW, Waldman DA, Milicic M, Myers L (2001) Patellar resurfacing in total knee arthroplasty. A prospective, randomized, double-blind study with five to seven years of follow-up. J Bone Joint Surg Am 83(9):1376–1381

    Article  PubMed  Google Scholar 

  4. Bercovy M, Beldame J, Lefebvre B, Duron A (2012) A prospective clinical and radiological study comparing hydroxyapatite-coated with cemented tibial components in total knee replacement. J Bone Joint Surg Br 94(4):497–503

    Article  CAS  PubMed  Google Scholar 

  5. Berger RA, Crossett LS, Jacobs JJ, Rubash HE (1998) Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res 356:144–153

    Article  Google Scholar 

  6. Bhattee G, Moonot P, Govindaswamy R, Pope A, Fiddian N, Harvey A (2014) Does malrotation of components correlate with patient dissatisfaction following secondary patellar resurfacing? Knee 21(1):247–251

    Article  PubMed  Google Scholar 

  7. Boyd AD, Ewald FC, Thomas WH, Poss R, Sledge CB (1993) Long-term complications after total knee arthroplasty with or without resurfacing of the patella. J Bone Joint Surg Am 5(5):674–681

    Article  Google Scholar 

  8. Brick GW, Scott RD (1988) The patellofemoral component of total knee arthroplasty. Clin Orthop Relat Res 231:163–178

    Google Scholar 

  9. Conditt MA, Noble PC, Allen B, Shen M, Parsley BS, Mathis KB (2005) Surface damage of patellar components used in total knee arthroplasty. J Bone Joint Surg Am 87(6):1265–1271

    PubMed  Google Scholar 

  10. Fitzpatrick CK, Baldwin MA, Ali AA, Laz PJ, Rullkoetter PJ (2011) Comparison of patellar bone strain in the natural and implanted knee during simulated deep flexion. J Orthop Res 29(2):232–239

    Article  PubMed  Google Scholar 

  11. Fitzpatrick CK, Kim RH, Ali AA, Smoger LM, Rullkoetter PJ (2013) Effects of resection thickness on mechanics of resurfaced patellae. J Biomech 46(9):1568–1575

    Article  PubMed  Google Scholar 

  12. Fitzpatrick CK, Rullkoetter PJ (2012) Influence of patellofemoral articular geometry and material on mechanics of the unresurfaced patella. J Biomech 45(11):1909–1915

    Article  PubMed  Google Scholar 

  13. Francke EI, Lachiewicz PF (2000) Failure of a cemented all-polyethylene patellar component of a press-fit condylar total knee arthroplasty. J Arthroplasty 15(2):234–237

    Article  CAS  PubMed  Google Scholar 

  14. Godest AC, Beaugonin M, Haug E, Taylor M, Gregson PJ (2002) Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis. J Biomech 35(2):267–275

    Article  CAS  PubMed  Google Scholar 

  15. Huang CH, Hsu LI, Lin KJ, Chang TK, Cheng CK, Lu YC, Chen CS, Huang CH (2014) Patellofemoral kinematics during deep knee flexion after total knee replacement: a computational simulation. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-013-2819-y

    Google Scholar 

  16. Huang CH, Lee YM, Lai JH, Liau JJ, Cheng CK (1999) Failure of the all-polyethylene patellar component after total knee arthroplasty. J Arthroplasty 14(8):940–944

    Article  CAS  PubMed  Google Scholar 

  17. Huang CH, Liau JJ, Huang CH, Cheng CK (2007) Stress analysis of the anterior tibial post in posterior stabilized knee prostheses. J Orthop Res 25(4):442–449

    Article  PubMed  Google Scholar 

  18. Iwaki H, Pinskerova V, Freeman MA (2000) Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J Bone Joint Surg Br 82(8):1189–1195

    Article  CAS  PubMed  Google Scholar 

  19. Kaper BP, Woolfrey M, Bourne RB (2000) The effect of built-in external femoral rotation on patellofemoral tracking in the genesis II total knee arthroplasty. J Arthroplasty 15(8):964–969

    Article  CAS  PubMed  Google Scholar 

  20. Keshmiri A, Maderbacher G, Baier C, Muller W, Grifka J, Springorum HR (2014) Do surgical patellar interventions restore patellar kinematics in fixed-bearing, cruciate-retaining total knee arthroplasty?: an in vitro study. J Arthroplasty. doi:10.1016/j.arth.2014.07.008

    PubMed  Google Scholar 

  21. Kim YH, Park JW, Kim JS (2012) Comparison of the Genesis II total knee replacement with oxidised zirconium and cobalt-chromium femoral components in the same patients: a prospective, double-blind, randomised controlled study. J Bone Joint Surg Br 94(9):1221–1227

    Article  PubMed  Google Scholar 

  22. Kong CG, Park SW, Yang H, In Y (2014) The effect of femoral component design on patellar tracking in total knee arthroplasty: Genesis II prosthesis versus Vanguard prosthesis. Arch Orthop Trauma Surg 134(4):571–576

    Article  PubMed  Google Scholar 

  23. Levai JP, McLeod HC, Freeman MA (1983) Why not resurface the patella? J Bone Joint Surg Br 65(4):448–451

    CAS  PubMed  Google Scholar 

  24. Li B, Bai L, Fu Y, Wang G, He M, Wang J (2012) Comparison of clinical outcomes between patellar resurfacing and nonresurfacing in total knee arthroplasty: retrospective study of 130 cases. J Int Med Res 40(5):1794–1803

    Article  CAS  PubMed  Google Scholar 

  25. Liu YL, Lin KJ, Huang CH, Chen WC, Chen CH, Chang TW, Lai YS, Cheng CK (2011) Anatomic-like polyethylene insert could improve knee kinematics after total knee arthroplasty—a computational assessment. Clin Biomech 26(6):612–619

    Article  Google Scholar 

  26. Ma HM, Lu YC, Kwok TG, Ho FY, Huang CY, Huang CH (2007) The effect of the design of the femoral component on the conformity of the patellofemoral joint in total knee replacement. J Bone Joint Surg Br 89(3):408–412

    Article  PubMed  Google Scholar 

  27. Manopoulos P, Havet E, Pearce O, Lardanchet JF, Mertl P (2012) Mid- to long-term results of revision total knee replacement using press-fit intramedullary stems with cemented femoral and tibial components. J Bone Joint Surg Br 94(7):937–940

    Article  CAS  PubMed  Google Scholar 

  28. McNamara JL, Collier JP, Mayor MB, Jensen RE (1994) A comparison of contact pressures in tibial and patellar total knee components before and after service in vivo. Clin Orthop Relat Res 299:104–113

    Google Scholar 

  29. Merican AM, Ghosh KM, Baena FR, Deehan DJ, Amis AA (2014) Patellar thickness and lateral retinacular release affects patellofemoral kinematics in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 22(3):526–533

    Article  PubMed  Google Scholar 

  30. Merican AM, Ghosh KM, Iranpour F, Deehan DJ, Amis AA (2011) The effect of femoral component rotation on the kinematics of the tibiofemoral and patellofemoral joints after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 19(9):1479–1487

    Article  CAS  PubMed  Google Scholar 

  31. Miller MC, Berger RA, Petrella AJ, Karmas A, Rubash HE (2001) Optimizing femoral component rotation in total knee arthroplasty. Clin Orthop Relat Res 392:38–45

    Article  Google Scholar 

  32. Pilling RW, Moulder E, Allgar V, Messner J, Sun Z, Mohsen A (2012) Patellar resurfacing in primary total knee replacement: a meta-analysis. J Bone Joint Surg Am 94(24):2270–2278

    Article  CAS  PubMed  Google Scholar 

  33. Reilly DT, Burstein AH (1975) The elastic and ultimate properties of compact bone tissue. J Biomech 8(6):393–405

    Article  CAS  PubMed  Google Scholar 

  34. Reilly DT, Martens M (1972) Experimental analysis of the quadriceps muscle force and patello-femoral joint reaction force for various activities. Acta Orthop 43(2):126–137

    Article  CAS  Google Scholar 

  35. Saffarini M, Ntagiopoulos PG, Demey G, Le Negaret B, Dejour DH (2014) Evidence of trochlear dysplasia in patellofemoral arthroplasty designs. Knee Surg Sports Traumatol Arthrosc 22(10):2574–2581

    Article  PubMed  Google Scholar 

  36. Schindler OS (2012) Basic kinematics and biomechanics of the patellofemoral joint part 2: the patella in total knee arthroplasty. Acta Orthop Belg 78(1):11–29

    PubMed  Google Scholar 

  37. Singerman R, Gabriel SM, Maheshwer CB, Kennedy JW (1999) Patellar contact forces with and without patellar resurfacing in total knee arthroplasty. J Arthroplasty 14(5):603–609

    Article  CAS  PubMed  Google Scholar 

  38. Stäubli H, Schatzmann L, Brunner P, Rincón L, Nolte L (1999) Mechanical Tensile Properties of the quadriceps tendon and patellar ligament in young adults. Am J Sports Med 27(1):27–34

    PubMed  Google Scholar 

  39. Steinbruck A, Schroder C, Woiczinski M, Fottner A, Muller PE, Jansson V (2014) The effect of trochlea tilting on patellofemoral contact patterns after total knee arthroplasty: an in vitro study. Arch Orthop Trauma Surg 134(6):867–872

    Article  PubMed  Google Scholar 

  40. Takahashi A, Sano H, Ohnuma M, Kashiwaba M, Chiba D, Kamimura M, Sugita T, Itoi E (2012) Patellar morphology and femoral component geometry influence patellofemoral contact stress in total knee arthroplasty without patellar resurfacing. Knee Surg Sports Traumatol Arthrosc 20(9):1787–1795

    Article  PubMed  Google Scholar 

  41. Takahashi A, Sano H, Ohnuma M, Kashiwaba M, Chiba D, Kamimura M, Sugita T, Itoi E (2012) Patellar morphology and femoral component geometry influence patellofemoral contact stress in total knee arthroplasty without patellar resurfacing. Knee Surg Sports Traumatol Arthrosc 20(9):1787–1795

    Article  PubMed  Google Scholar 

  42. Takeuchi T, Lathi VK, Khan AM, Hayes WC (1995) Patellofemoral contact pressures exceed the compressive yield strength of UHMWPE in total knee arthroplasties. J Arthroplasty 10(3):363–368

    Article  CAS  PubMed  Google Scholar 

  43. Thompson JA, Hast MW, Granger JF, Piazza SJ, Siston RA (2011) Biomechanical effects of total knee arthroplasty component malrotation: a computational simulation. J Orthop Res 29(7):969–975

    Article  PubMed  Google Scholar 

  44. Thompson NW, Ruiz AL, Breslin E, Beverland DE (2001) Total knee arthroplasty without patellar resurfacing in isolated patellofemoral osteoarthritis. J Arthroplasty 16(5):607–612

    Article  CAS  PubMed  Google Scholar 

  45. van Jonbergen HP, Reuver JM, Mutsaerts EL, Poolman RW (2014) Determinants of anterior knee pain following total knee replacement: a systematic review. Knee Surg Sports Traumatol Arthrosc 22(3):478–499

    Article  PubMed  Google Scholar 

  46. Verlinden C, Uvin P, Labey L, Luyckx JP, Bellemans J, Vandenneucker H (2010) The influence of malrotation of the femoral component in total knee replacement on the mechanics of patellofemoral contact during gait: an in vitro biomechanical study. J Bone Joint Surg Br 92(5):737–742

    Article  CAS  PubMed  Google Scholar 

  47. Whiteside LA, Nakamura T (2003) Effect of femoral component design on unresurfaced patellas in knee arthroplasty. Clin Orthop Relat Res 410:189–198

    Article  Google Scholar 

  48. Xu C, Chu X, Wu H (2007) Effects of patellar resurfacing on contact area and contact stress in total knee arthroplasty. Knee 14(3):183–187

    Article  PubMed  Google Scholar 

  49. Yoshii I, Whiteside LA, Anouchi YS (1992) The effect of patellar button placement and femoral component design on patellar tracking in total knee arthroplasty. Clin Orthop Relat Res 275:211–219

    Google Scholar 

  50. Youm YS, Cho WS, Woo JH, Kim BK (2010) The effect of patellar thickness changes on patellar tilt in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 18(7):923–927

    Article  PubMed  Google Scholar 

  51. Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive procedure for practical engineerng analysis. Int J Numer Method Biomed Eng 24(2):337–357

    Article  Google Scholar 

Download references

Acknowledgments

The authors are pleased to acknowledge the financial support of the Ministry of Science and Technology in Taiwan (MOST 100-2221-E-195-001-MY2 and MOST 102-2221-E-195-001). We particularly thank Colin J. McClean for his kind assistance in language editing and proofreading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yung-Chang Lu or Chen-Sheng Chen.

Additional information

Chang-Hung Huang and Lin-I Hsu have contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, CH., Hsu, LI., Chang, TK. et al. Stress distribution of the patellofemoral joint in the anatomic V-shape and curved dome-shape femoral component: a comparison of resurfaced and unresurfaced patellae. Knee Surg Sports Traumatol Arthrosc 25, 263–271 (2017). https://doi.org/10.1007/s00167-014-3485-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-014-3485-4

Keywords

Navigation