Skip to main content
Log in

Quadriceps tendon and patellar ligament: Cryosectional anatomy and structural properties in young adults

  • Knee and ACL
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Structural tensile properties analyses of 10-mm-wide central sections of quadriceps tendon-bone (QT-B) and bone-patellar ligament (B-PL) complexes from young male donors (mean age 24.9 years, range 19–32 years) were complemented by a cryosectional analysis: each QT-B complex was composed of the segment of the quadriceps tendon with the proximal half of the patella attached, each B-PL complex was composed of the distal half of the patella with the patellar ligament attached. A servohydraulic materials testing machine was used to assess ultimate failure load of 16 unconditioned and 16 preconditioned QT-B and B-PL complexes at an extension rate of 1 mm/s. Ligaments/tendons were preconditioned during 200 cycles from 50 to 800 N at 0.5 Hz. On cryosections the quadriceps tendons were significantly longer and thicker and exhibited a significantly larger bony attachment area than the patellar ligaments. Cross-sectional areas of 10-mm-wide, full-thickness, central parts of unconditioned quadriceps tendons were significantly greater and measured 64.6±8.4 mm2 with respect to the cross-sectional area of patellar ligament, measuring 36.8±5.7 mm2 (P<0.0025). Ultimate failure loads for unconditioned complexes resulted at 2173±618 N for QT-B complexes and at 1953±325 N for B-PL complexes (P=0.43). Ultimate failure load values measured 2353±495 N for preconditioned QT-B complexes and 2376±152 N for preconditioned B-PL complexes, respectively (P=0.77). Despite the fact that initial testing length, area of unconditioned QT-B and B-PL complexes were significantly different, displacement at ultimate load, energy to failure and total energy were not. In terms of ultimate tensile strength, the 10-mm-wide central part of the QT-B complex compared favourably to the tensile properties of the human femur-anterior cruciate ligament-tibia complex from a comparable young age group. The evidence from anatomic, cryosectional and structural properties analyses suggests that the QT-B complex may be a valuable and versatile adjunct to the surgeon's armamentarium in reconstructive cruciate ligament surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beynnon BD, Johnson RJ, Fleming BC, Renström PA, Nichols CE, Pope MH, Haugh L.D (1994) The measurement of elongation of anterior cruciate ligament grafts in vivo, J Bone Joint Surg [Am] 76: 520–531

    Google Scholar 

  2. Beynnon BD, Fleming BC, Peura GD, Johnson RJ, Renström PA, Nichols CE, Pope MH (1995) An in-vivo investigation of anterior cruciate ligament strain: the effect of functional knee bracing and attachment strap tension. Trans 41st Orthop Res Soc 20: 94

    Google Scholar 

  3. Blauth W (1984) Die Zweizügelige Ersatzplastik des vorderen Kreuzbandes aus des Quadricepssehne. Unfallheilkunde 87: 45–51

    PubMed  Google Scholar 

  4. Blauth M, Tillmann B (1993) Stressing on the human femoro-patellar joint. I. Components of a vertical and horizontal tensile bracing system. Anat Embryol 168: 117

    Google Scholar 

  5. Blevins FT, Hecker AT, Bigler GT, Boland AL, Hayes WC (1994) The effect of donor age and strain rate on the biomechanical properties of bonepatellar tendon-bone allografts. Am J Sports Med 22: 328–333

    PubMed  Google Scholar 

  6. Bonutti PM, Weiker GG, Andrish JT (1986) Isobutyl cyanoacrylate as a soft tissue adhesive. An in vitro study in the rabbit achilles tendon. Basic Sci Pathol III: 241–246

    Google Scholar 

  7. Brown C (1995) Biomechanics of semitendinosus and gracilic grafts. In: Sports Medicine 2000, Stockholm, Sweden, June 7

  8. Brunner P, Schatzmann L, Rincón L, Stäubli HU, Nolte L-P (1995) A new freezing technique for the fixation of soft connective tissue in “in vitro” biomechanical testing. In: XVth Contress of the International Society of Biomechanics, July 2–6, Jyväkylä, Finland, abstract book 136

  9. Butler DL (1989) Kappa delta award paper. Anterior cruciate ligament: its normal response and replacement. J Orthop Res 7: 910–921

    PubMed  Google Scholar 

  10. Butler DL, Kay MD, Stouffer DC (1986) Comparison of material properties in fascicle-bone units from human patellar tendon and knec ligaments. J Biomech 19: 425–432

    PubMed  Google Scholar 

  11. Carlin GJ, Ishibashi Y, Kim HS, Livesay GA, Xerogeane, JW, Harner CD, Woo SL-Y (1995) Determination of in-situ forces in the human posterior cruciate ligament. Trans 4lst Orthop Res Soc 20: 38

    Google Scholar 

  12. Clancy WG, Nelson DA, Reider B, Narechania RG (1982) Anterior cruciate ligament reconstruction using onethird of the patella ligament augmented by extraarticular tendon transfer. J Bone Joint Surg [Am] 65: 353–359

    Google Scholar 

  13. Clancy WG, Shelbourne KD, Zoellner GB, Keene JS, Reider B, Rosenberg TD (1983) Treatment of knee joint instability secondary to rupture of the posterior cruciate ligament. J Bone Joint Surg [Am] 65: 310–322

    Google Scholar 

  14. Cooper DE, Deng XH, Burstein AL, Warren RF (1993) The strength of the central third patellar tendon graft. A biomechanical study. Am J Sports Med 21: 818–824

    PubMed  Google Scholar 

  15. Danto MI, Woo SL-Y (1993) The mechanical properties of skeletally mature rabbit anterior cruciate ligament and patellar tendon over a range of strain rates. J Orthop Res 11: 58–67

    PubMed  Google Scholar 

  16. Dye S (1993) Patellofemoral anatomy. In: Fox JM, Delpizzo M (eds) The patellofemoral joint, MacGraw Hill, New York, pp 1–12

    Google Scholar 

  17. Elder SH, Soslowsky LJ (1995) Geometric and tensile property investigation of a tendon that passes around a bony pulley. Trans 4lst Orthop Res Soc 20: 40

    Google Scholar 

  18. Eriksson E (1976) Reconstruction of the anterior cruciate ligament. Orthop Clin North Am 7: 167–179

    PubMed  Google Scholar 

  19. Evans EJ, Benjamini M, Pemberton DJ (1990) Fibrocartilage in the attachment zones of the quadriceps tendon and patellar ligament of man. J Anat 171: 155–162

    PubMed  Google Scholar 

  20. Fu FII Harner CD, Johnson DL, Miller MD, Woo SL-Y (1993) Biomechanics of knee ligaments. Basic concepts and clinical application. J Bone Joint Surg [Am] 75: 1716–1727

    Google Scholar 

  21. Fulkerson JP, Langeland R (1995) An alternative cruciate reconstruction graft: the central quadriceps tendon. Technical note. Arthroscopy 11: 252–254

    PubMed  Google Scholar 

  22. Furman W, Marshall JL, Girgis FG (1976) The anterior cruciate ligament. A functional analysis based on postmortem studies. J Bone Joint Surg [Am] 58: 179–185

    Google Scholar 

  23. Graf BK, Fujisaki K, Vanderby RJ, Vailas AC (1992) The effect of in situ freezing on rabbit patellar tendon. A histological, biochemical, and biomechanical analysis. Am J Sports Med 20: 401–405

    PubMed  Google Scholar 

  24. Graf BK, Vanderby R, Ulm MJ, Rogalski RP, Thielke RJ (1994) Effect of preconditioning on the viscoelastic response of primate patellar tendon. Arthroscopy 10: 90–96

    PubMed  Google Scholar 

  25. Haut RC (1983) Age-dependent influence on strain rate on the tensile failure of rat-tail tendon. J Biomech Eng 105: 296–299

    PubMed  Google Scholar 

  26. Haut RC, Powlison AC (1990) The effects of test environment and cyclic stretching on the failure properties of human patellar tendons. J Orthop Res 8: 532–540

    PubMed  Google Scholar 

  27. Howe JG, Johnson RJ, Kaplan MJ, Fleming B, Jarvinen M (1991) Ahterior cruciate ligament reconstruction using quadriceps patellar tendon graft. Part I. Long-term follow-up. Am J Sports Med 19: 447–457

    PubMed  Google Scholar 

  28. Jones KG (1963) Reconstruction of the anterior cruciate ligament. A technique using the central one-third of the patellar ligament. J Bone Joint Surg [Am] 45: 925–932

    Google Scholar 

  29. Jones RS, Nawana NS, Pearcy MJ, Learmonth DJA, Bickerstaff DR, Costi JJ, Paterson RS (1995) Mechanical properties of the human anterior cruciate ligament. Clin Biomech 10: 339–341

    Google Scholar 

  30. Kennedy JC, Hawkins RJ, Willis RB, Danylchuck KD (1976) Tension studies of human knee ligaments. Yield point, ultimate failure, and disruption of the cruciate and tibial collateral ligaments. J Bone Joint Surg [Am] 58: 350–355

    Google Scholar 

  31. Kleipool AE, Loon T von, Marti RK (1974) Pain after use of the central third of the patellar tendon for cruciate ligament reconstruction. Acta Orthop Scand 65:62–66

    Google Scholar 

  32. Kuei SC, Woo SL-Y, Gomez MA, Akeson WH (1979) The viscoelastic, thermoelastic and time-dependent properties of the knee ligaments. Trans 41st Orthop Res Soc 4:25

    Google Scholar 

  33. Kwan MK, Lin TH-C, Woo SL-Y (1993) On the viscoelastic properties of the anteromedial bundle of the anterior cruciate ligament. J Biomech 26:447–452

    PubMed  Google Scholar 

  34. Lam TC, Thomas CG, Shrive NG, Frank CB, Sabiston CP (1990) The effects of temperature on the viscoelastic properties of the rabbit medial collateral ligament. J Biomech Eng 112:147–152

    PubMed  Google Scholar 

  35. Liggins AB, Shemerluk R, Hardie R, Finlay JB (1992) Technique for the application of physiological loading to soft tissue in vitro. J Biomed Eng 14:440–441

    PubMed  Google Scholar 

  36. Marshall JL, Warren RF, Wickiewicz TL et al (1979) The anterior cruciate ligament. A technique of repair and reconstruction. Clin Orthop 143:97–106

    PubMed  Google Scholar 

  37. McKernan DJ, Weiss JA, Deffner KT, Greenwald RM (1995) Tensile properties of gracilis, semitendinosus and patellar tendons from the same donor. Trans 41 st Orthop Res Soc 20:39

    Google Scholar 

  38. Mommersteeg TJA, Blankevoort L, Huiskes R, Kooloos JGM, Kauer JMG (1996) Characterization of the mechanical behavior of human knee ligaments: a numerical-experimental approach. J Biomech Eng 29:2:151–160

    Google Scholar 

  39. Munns, SW, Jayaraman G, Luallin SR (1994) Effects of pretwist on biomechanical properties of canine patellar tendon. Arthroscopy 10:404–411.

    PubMed  Google Scholar 

  40. Noyes FR, Grood ES (1976) The strength of the anterior cruciate ligament in humans and rhesus monkeys. J Bone Joint Surg [Am] 58:1074–1082

    Google Scholar 

  41. Noyes FR, DeLucas JL, Torvik PJ (1974) Biomechanics of anterior cruciate ligament failure: an analysis of strain-rate sensitivity and mechanism of failure in primates. J Bone Joint Surg [Am] 56:236–253

    Google Scholar 

  42. Noyes, FR, Torvik PJ, Hyde WB, DeLucas JL (1974) Biomechanics of ligament failure II. An analysis of immobilization, exercise, and reconditioning effects in primates. Age related and species related changes. J. Bone Joint Surg [Am] 56:1406–1418

    Google Scholar 

  43. Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg [Am] 66:344–352

    Google Scholar 

  44. Odensten M, Gillquist J (1985) Functional anatomy of the anterior cruciate ligament and a rationale for reconstruction. J Bone Joint Surg [Am] 67:257–262

    Google Scholar 

  45. Rasmussen TJ, Feder SM, Butler DL, Noyes FR (1994) The effects of 4 Mrad of γ irradiation on the initial mechanical properties of bone-patellar tendon-bone grafts. Arthroscopy 10:188–197

    PubMed  Google Scholar 

  46. Rauschning W (1979) Serial cryosectioning of human knee specimens for a study of functional anatomy. Sci Tools 26:47–50

    Google Scholar 

  47. Reider B, Marshall JL, Costlin B et al (1981) The anterior aspect of the knee joint. J Bone Joint Surg [Am] 63:351

    Google Scholar 

  48. Riemersma DJ, De Bruyn P (1986) Variations in cross-sectional area and composition of equine tendons with regard to their mechanical function. Res Vet Sci 41:7–13

    PubMed  Google Scholar 

  49. Riemersma DJ, Schamhardt HC (1982) The cryo-jaw. A clamp designed for in vitro rhcology studies of horse digital flexor tendons. J Biomecl 15:619–620

    Google Scholar 

  50. Rigby BJ, Hirai N, Spikes JD, Eyring H (1958) The mechanical properties of rat tail tendon. J. Gen Physiol 4:265–283

    Google Scholar 

  51. Rosenberg TD (1995) Endoscopic ACL reconstruction with quadrupled semitendinosus: results after two years. In: Sports Medicine 2000, Stockholm. Sweden, June 7

  52. Sato S, Lee TQ, Gomez MA, Woo SL-Y (1985) Temperature dependent tensile behaviour of the canine medial collateral ligament. Trans 41 st Orthop Res Soc 20:92

    Google Scholar 

  53. Scherping SC, Schmidt CC, Georgescu HI, Kwoh CK, Evans CH, Woo SL-Y (1995) The effect of aging on the proliferative response of anterior cruciate and medial collateral ligament fibroblasts to growth factors. Trans 41 st Orthop Res Soc 20:92

    Google Scholar 

  54. Shrive NG, Lam TC, Damson E, Frank CB (1988) A hew method of measuring the cross-sectional area of connective tissue structures. J Biomech Eng 110:104–109

    PubMed  Google Scholar 

  55. Stäubli HU (1990) Technik der arthroskopisch assistierten Substitution mittels autologer Quadricepssehne. In: Jakob RP, Stäubli HU (eds) Kniegelenk und Kreuzbänder. Springer, Berlin Heidelberg New York, pp. 456–464

    Google Scholar 

  56. Stäubli HU (1992) Arthroscopically assisted ACL reconstruction using autologous quadriceps tendon. In Jakob RP, Stäubli HU (eds) The knee and the cruciate ligaments. Springer, Berlin Heidelberg New York. pp 443–451

    Google Scholar 

  57. Stäubli HU, Rauschning W (1994) Tibial attachment area of the anterior cruciate ligament in the extended knee position. Knee Surg Sports Traumatol Arthrosc 2:138–146

    PubMed  Google Scholar 

  58. Takeda Y, Xerogeanes JW, Livesay GA, Fu FH, Woo SL-Y (1994) Bromechanical function of the human anterior cruciate ligament. Arthroscopy 10:140–147

    PubMed  Google Scholar 

  59. Vanderby R, Masters GP, Bowers JR et al (1991) A device to measure the cross-sectional area of soft connective tissues. IEEE Trans Biomed Eng 38:1040–1042

    PubMed  Google Scholar 

  60. Woo SL-Y (1992) Mechanical properties of tendons and ligaments. I. Quasistatic and nonlinear viscolastic properties. Biorheology 19:385–396

    Google Scholar 

  61. Woo SL-Y, Gomez MA, Woo YK, Akeson WH (1962) Mechanical properties of tendons and ligaments. II. The relationships of immobilization and exercise on tissue remodeling. Biorheology 19:397–408

    Google Scholar 

  62. Woo SL-Y, Gomez MA, Amiel D, Ritter MA, Gelbermann RH, Akeson WH (1981) The effects of exercise on the biomechanical and biochemical properties of swine digital flexor tendons. J Biomech Eng 103:51–56

    PubMed  Google Scholar 

  63. Woo SL-Y, Sato S, Lee TQ, Gomez MA (1984) Thermal effects on ligament tensile behaviour. 37th All Eng Med Biol 37:273

    Google Scholar 

  64. Woo SL-Y, Orlando CA, Camp JF, Akeson WH (1986) Effects of postmortem storage by freezing on ligament tensile behavior. J Biomecl 19:399–404

    Google Scholar 

  65. Woo SL-Y, Lee TQ, Gomez MA, Sato S, Field FP (1987) Temperature dependent behaviour of the canine medial collateral ligament. J Biomech Eng 109: 68–71

    PubMed  Google Scholar 

  66. Woo SL-Y, Young EP, Kwan MK (1990) Fundamental studies in knee ligament mechanics. In: Daniel D et al (eds) Knee ligaments: structure function, injury, and repair. Raven, New York, pp 115–134

    Google Scholar 

  67. Woo SL-Y, Hollis JM, Adams DJ, Lyon RM, Takai S (1991) Tensile properties of the human femur—anterior cruciate ligament—tibia complex: the effects of specimen age and orientation. Am J Sports Med 19:217–225

    PubMed  Google Scholar 

  68. Ymymoto N, Hayashi K, Kuriyama H, Ohno K, Yasuda K, Kaneda K (1992) Mechanical properties of the rabbit patellar tendon. J Biomech Eng 114:332–337

    PubMed  Google Scholar 

  69. Xerogeanes JW, Takeda Y, Ishibashi Y, Kim HS, Carlin GJ, Zaffagini S, Fu FH, Woo SL-Y (1995) Functional evaluation of various animal models for the human ACL. Trans 41 st Orthop Res Soc 20:93

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stäubli, H.U., Schatzmann, L., Brunner, P. et al. Quadriceps tendon and patellar ligament: Cryosectional anatomy and structural properties in young adults. Knee Surg, Sports traumatol, Arthroscopy 4, 100–110 (1996). https://doi.org/10.1007/BF01477262

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01477262

Key words

Navigation