Skip to main content
Log in

Quasi-brittle damage modeling based on incremental energy relaxation combined with a viscous-type regularization

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This paper deals with a constitutive model suitable for the analysis of quasi-brittle damage in structures. The model is based on incremental energy relaxation combined with a viscous-type regularization. A similar approach—which also represents the inspiration for the improved model presented in this paper—was recently proposed in Junker et al. (Contin Mech Thermodyn 29(1):291–310, 2017). Within this work, the model introduced in Junker et al. (2017) is critically analyzed first. This analysis leads to an improved model which shows the same features as that in Junker et al. (2017), but which (i) eliminates unnecessary model parameters, (ii) can be better interpreted from a physics point of view, (iii) can capture a fully softened state (zero stresses), and (iv) is characterized by a very simple evolution equation. In contrast to the cited work, this evolution equation is (v) integrated fully implicitly and (vi) the resulting time-discrete evolution equation can be solved analytically providing a numerically efficient closed-form solution. It is shown that the final model is indeed well-posed (i.e., its tangent is positive definite). Explicit conditions guaranteeing this well-posedness are derived. Furthermore, by additively decomposing the stress rate into deformation- and purely time-dependent terms, the functionality of the model is explained. Illustrative numerical examples confirm the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Junker, P., Schwarz, S., Makowski, J., Hackl, K.: A relaxation-based approach to damage modeling. Contin. Mech. Thermodyn. 29(1), 291–310 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Simo, J.C., Oliver, J., Armero, F.: An analysis of strong discontinuities induced by strain softening in rate-independent inelastic solids. Comput. Mech. 12(5), 277–296 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bazant, Z.P., Jirásek, M.: Nonlocal integral formulations of plasticity and damage: survey of progress. J. Eng. Mech. 128(11), 1119–1149 (2002)

    Article  Google Scholar 

  4. Peerlings, R.H.J., Geers, M.G.D., de Borst, R., Brekelmans, W.A.M.: A critical comparison of nonlocal and gradient-enhanced softening continua. Int. J. Solids Struct. 38(44), 7723–7746 (2001)

    Article  MATH  Google Scholar 

  5. Hertzberg, R.W.: Deformation and Fracture Mechanics of Engineering Materials. Wiley, London (1989)

    Google Scholar 

  6. Anderson, T.L.: Fracture Mechanics: Fundamentals and Applications. CRC Press, London (2017)

    MATH  Google Scholar 

  7. Gross, D., Seelig, T.: Fracture Mechanics: With an Introduction to Micromechanics. Springer, Berlin (2017)

    MATH  Google Scholar 

  8. Sukumar, N., Moës, N., Moran, B., Belytschko, T.: Extended finite element method for three-dimensional crack modelling. Int. J. Numer. Meth. Eng. 48(11), 1549–1570 (2000)

    Article  MATH  Google Scholar 

  9. Radulovic, R., Bruhns, O., Mosler, J.: Effective 3d failure simulations by combining the advantages of embedded strong discontinuity approaches and classical interface elements. Eng. Fract. Mech. 78(12), 2470–2485 (2011)

    Article  Google Scholar 

  10. Ortiz, M., Pandolfi, A.: Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int. J. Numer. Methods Eng. 44(9), 1267–1282 (1999)

    Article  MATH  Google Scholar 

  11. Miehe, C., Gürses, E., Birkle, M.: A computational framework of configurational-force-driven brittle fracture based on incremental energy minimization. Int. J. Fract. 145(4), 245–259 (2007)

    Article  MATH  Google Scholar 

  12. Lemaitre, J., Desmorat, R.: Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures. Springer, Berlin (2005)

    Google Scholar 

  13. Matzenmiller, A., Lubliner, J., Taylor, R.L.: A constitutive model for anisotropic damage in fiber-composites. Mech. Mater. 20(2), 125–152 (1995)

    Article  Google Scholar 

  14. Dimitrijevic, B.J., Hackl, K.: A method for gradient enhancement of continuum damage models. Technische Mechanik 28(1), 43–52 (2008)

    Google Scholar 

  15. Dimitrijevic, B.J., Hackl, K.: A regularization framework for damage-plasticity models via gradient enhancement of the free energy. Int. J. Numer. Methods Biomed. Eng. 27(8), 1199–1210 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bourdin, B., Francfort, G.A., Marigo, J.-J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48(4), 797–826 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 83(10), 1273–1311 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Needleman, A.: Material rate dependence and mesh sensitivity in localization problems. Comput. Methods Appl. Mech. Eng. 67(1), 69–85 (1988)

    Article  ADS  MATH  Google Scholar 

  19. Faria, R., Oliver, J., Cervera, M.: A strain-based plastic viscous-damage model for massive concrete structures. Int. J. Solids Struct. 35(14), 1533–1558 (1998)

    Article  MATH  Google Scholar 

  20. Suffis, A., Lubrecht, T.A.A., Combescure, A.: Damage model with delay effect: Analytical and numerical studies of the evolution of the characteristic damage length. Int. J. Solids Struct. 40(13–14), 3463–3476 (2003)

    Article  MATH  Google Scholar 

  21. Forest, S., Lorentz, E.: Local Approach to Fracture, Presse des Mines (2004) (Ch. 11)

  22. Carstensen, C., Hackl, K., Mielke, A.: Non-convex potentials and microstructures in finite-strain plasticity. Proc. R. Soc. A Math. Phys. Eng. Sci. 458(2018), 299–317 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Mielke, A.: Deriving new evolution equations for microstructures via relaxation of variational incremental problems. Comput. Methods Appl. Mech. Eng. 193(48), 5095–5127 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Ortiz, M., Repetto, E.A.: Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47(2), 397–462 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Ortiz, M., Stainier, L.: The variational formulation of viscoplastic constitutive updates. Comput. Methods Appl. Mech. Eng. 171(3), 419–444 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Gürses, E., Miehe, C.: On evolving deformation microstructures in non-convex partially damaged solids. J. Mech. Phys. Solids 59(6), 1268–1290 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Lemaitre, J.: A continuous damage mechanics model for ductile fracture. J. Eng. Mater. Technol. 107(1), 83–89 (1985)

    Article  Google Scholar 

  28. Kachanov, L.M.: Time of the rupture process under creep conditions. Otdelenie Teckhnicheskikh Nauk, Izvestiia Akademii Nauk SSSR 8, 26–31 (1958)

    Google Scholar 

  29. Gürses, E., Lambrecht, M., Miehe, C.: Application of relaxation techniques to nonconvex isotropic damage model. Proc. Appl. Math. Mech. 3(1), 222–223 (2003)

    Article  MATH  Google Scholar 

  30. Schmidt-Baldassari, M., Hackl, K.: Incremental variational principles in damage mechanics. Proc. Appl. Math. Mech. 2(1), 216–217 (2003)

    Article  MATH  Google Scholar 

  31. Mosler, J.: On variational updates for non-associative kinematic hardening of armstrong-frederick-type. Technische Mechanik 30(1–3), 244–251 (2010)

    Google Scholar 

  32. Mosler, J., Bruhns, O.: On the implementation of rate-independent standard dissipative solids at finite strain variational constitutive updates. Comput. Methods Appl. Mech. Eng. 199(9–12), 417–429 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Mosler, J., Bruhns, O.: Towards variational constitutive updates for non-associative plasticity models at finite strain: models based on a volumetric-deviatoric split. Int. J. Solids Struct. 46(7), 1676–1684 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mosler, J.: Variationally consistent modeling of finite strain plasticity theory with non-linear kinematic hardening. Comput. Methods Appl. Mech. Eng. 199(45–48), 2753–2764 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Junker, P., Makowski, J., Hackl, K.: The principle of the minimum of the dissipation potential for non-isothermal processes. Contin. Mech. Thermodyn. 26(3), 259–268 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Lubliner, J.: A maximum-dissipation principle in generalized plasticity. Acta Mech. 52(3–4), 225–237 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hackl, K., Fischer, F.D.: On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potentials. Proc. R. Soc. A Math. Phys. Eng. Sci. 464(2089), 117–132 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Junker, P.: Simulation of Shape Memory Alloys—Material Modeling using the Principle of Maximum Dissipation. Ph.d. thesis, Ruhr-Universität Bochum (2011)

  39. Radulovic, R.: Numerical Modeling of Localized Material Failure by Means of Strong Discontinuities at Finite Strains. Ph.d. thesis, Ruhr-Universität Bochum (2010)

  40. Ammar, K., Appolaire, B., Cailletaud, G., Forest, S.: Combining phase field approach and homogenization methods for modelling phase transformation in elastoplastic media. Eur. J. Comput. Mech. 18(5–6), 485–523 (2009)

    Article  MATH  Google Scholar 

  41. Mosler, J., Shchyglo, O., Hojjat, H.M.: A novel homogenization method for phase field approaches based on partial rank-one relaxation. J. Mech. Phys. Solids 68, 251–66 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199(45), 2765–2778 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Duvaut, G., Lions, J.-L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  44. Dias da Silva, V.: A simple model for viscous regularization of elasto-plastic constitutive laws with softening. Commun. Numer. Methods Eng. 20(7), 547–568 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Moreau, K., Moës, N., Picart, D., Stainier, L.: Explicit dynamics with a non-local damage model using the thick level set approach. Int. J. Numer. Methods Eng. 102(3–4), 808–838 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mosler.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langenfeld, K., Junker, P. & Mosler, J. Quasi-brittle damage modeling based on incremental energy relaxation combined with a viscous-type regularization. Continuum Mech. Thermodyn. 30, 1125–1144 (2018). https://doi.org/10.1007/s00161-018-0669-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-018-0669-z

Keywords

Navigation