Skip to main content
Log in

A computational framework of configurational-force-driven brittle fracture based on incremental energy minimization

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A variational formulation of quasi-static brittle fracture in elastic solids at small strains is proposed and an associated finite element implementation is presented. On the theoretical side, a consistent thermodynamic framework for brittle crack propagation is outlined. It is shown that both the elastic equilibrium response as well as the local crack evolution follow in a natural format by exploitation of a global Clausius–Planck inequality. Here, the canonical direction of the crack propagation associated with the classical Griffith criterion is the direction of the material configurational force which maximizes the local dissipation at the crack tip. On the numerical side, we first consider a standard finite element discretization in the two-dimensional space which yields a discrete formulation of the global dissipation in terms of configurational nodal forces. Next, consistent with the node-based setting, the discretization of the evolving crack discontinuity for two-dimensional problems is performed by the doubling of critical nodes and interface segments of the mesh. A crucial step for the success of this procedure is its embedding into a r-adaptive crack-segment re-orientation algorithm governed by configurational-force-based directional indicators. Here, successive crack propagation is performed by a staggered loading-release algorithm of energy minimization at frozen crack state followed by nodal releases at frozen deformation. We compare results obtained by the proposed formulation with other crack propagation criteria. The computational method proposed is extremely robust and shows an excellent performance for representative numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barenblatt GI (1962). Mathematical theory of equilibrium cracks in brittle fracture. Advan Appl Mech 7: 55–129

    MathSciNet  Google Scholar 

  • Barsoum RS (1976). On the use of isoparametric finite elements linear fracture mechanics. Int J Numer Methods Eng 10: 25–37

    Article  MATH  Google Scholar 

  • Barsoum RS (1977). Triangular quarter point elements as elastic and perfectly—plastic crack tip elements. Int J Numer Methods Eng 11: 85–98

    Article  MATH  Google Scholar 

  • Bouchard PO, Bay F and Chastel Y (2003). Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria.. Comp Methods Appl Mech Eng 192: 3887–908

    Article  MATH  Google Scholar 

  • Bouchard PO, Bay F, Chastel Y and Tovena I (2000). Crack propagation modelling using an advanced remeshing technique. Comp Methods Appl Mech Eng 189: 723–742

    Article  MATH  Google Scholar 

  • Bourdin B, Francfort GA and Marigo JJ (2000). Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48: 797–826

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Dal Maso G and Toader R (2002). A model for the quasistatic growth of brittle fractures: existence and approximation results. Arch Rational Mech Analysis 162: 101–135

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Denzer R, Barth FJ and Steinmann P (2003). Studies in elastic fracture mechanics based on the material force method. Int J Numer Methods Eng 58: 1817–1835

    Article  MATH  Google Scholar 

  • Erdogan F and Sih GC (1963). On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85: 519–527

    Google Scholar 

  • Eshelby JD (1951). The force on an elastic singularity. Philos Trans R Soc London A 224: 87–112

    ADS  Google Scholar 

  • Eshelby JD (1970) Energy relations and the energy–momentum tensor in continuum mechanics. In: Kanninen MF, et al. (ed) Inelastic behavior of solids. pp 77–115

  • Fagerström M and Larsson R (2006). Theory and numerics for finite deformation fracture modelling using strong discontinuities. Int J Numer Methods Eng 66: 911–948

    Article  MATH  Google Scholar 

  • Francfort GA and Marigo JJ (1998). Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46: 1319–1342

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Griffith AA (1921). The phenomena of rupture and flow in solids. Philos Trans R Soc London A 221: 163–198

    Article  ADS  Google Scholar 

  • Griffith AA (1924) The theory of rupture. In: Biezeno CB, Burgers JM (eds) Proceedings of the first international congress for applied mechanics, Delft. pp 55–63

  • Gurtin ME (2000). Configurational forces as basic concepts of continuum physics. Springer-Verlag, New York

    Google Scholar 

  • Gurtin ME and Podio-Guidugli P (1996). Configurational forces and the basic laws for crack propagation. J Mech Phys Solids 44: 905–927

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Heintz P (2006). On the numerical modelling of quasi-static crack growth in linear elastic fracture mechanics. Int J Numer Methods Eng 65: 174–189

    Article  MATH  MathSciNet  Google Scholar 

  • Heintz P, Larsson F, Hansbo P and Runesson K (2004). Adaptive strategies and error control for computing material forces in fracture mechanics. Int J Numer Methods Eng 60: 1287–1299

    Article  MATH  Google Scholar 

  • Henshell RD and Shaw KG (1975). Crack tip finite elements are unnecessary. Int J Numer Methods Eng 9: 495–507

    Article  MATH  Google Scholar 

  • Irwin GR (1958) Fracture. In: Flügge S (ed) Encyclopedia of physics, vol 6. Springer, pp 551–590

  • Kienzler R and Herrmann G (2000). Mechanics in material space with applications to defect and fracture mechanics. Springer-Verlag, Berlin, Heidelberg

    MATH  Google Scholar 

  • Kienzler R, Maugin GA (eds) (2001) Configurational mechanics of materials, CISM courses and lectures No 427, Springer-Verlag

  • Larsson R and Fagerström M (2005). A framework for fracture modelling based on the material forces concept with XFEM kinematics. Int J Numer Methods Eng 62: 1763–1788

    Article  MATH  Google Scholar 

  • Li FZ, Shih CF and Needleman A (1985). A comparison methods for calculating energy release rates. Eng Fract Mech 21: 405–421

    Article  Google Scholar 

  • Maiti SK and Smith R (1983). Comparison of the criteria for mixed mode brittle fracture based on the preinstability stress–strain file Part I: slit and elliptical cracks under uniaxial tensile loading. Int J Fract 23: 281–295

    Article  Google Scholar 

  • Maugin GA (1993). Material inhomogeneities in elasticity. Chapman & Hall, London

    MATH  Google Scholar 

  • Maugin GA (1995). Material forces: concepts and applications. Appl Mech Rev 48: 213–245

    Article  MathSciNet  Google Scholar 

  • Maugin GA and Trimarco C (1992). Pseudomomentum and material forces in nonlinear elasticity: variational formulations and applications to brittle fracture. Acta Mechanica 94: 1–28

    Article  MathSciNet  MATH  Google Scholar 

  • Miehe C, Gürses E (2006) A Robust algorithm for configurational-force-driven brittle crack propagation with r-adaptive mesh alignment. Int J Numer Methods doi:10.1002/nme.1999

    MATH  Google Scholar 

  • Mueller R, Kolling S and Gross D (2002). On configurational forces in the context of the finite element method. Int J Numer Methods Eng 53: 1557–1574

    Article  MATH  MathSciNet  Google Scholar 

  • Mueller R and Maugin GA (2002). On material forces and finite element discretization. Comp Mech 29: 52–60

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Negri M (2003). A finite element approximation of the Griffith’s model in fracture mechanics. Numerische Mathematik 95: 653–687

    Article  MATH  MathSciNet  Google Scholar 

  • Pandolfi A and Ortiz M (2002). An efficient adaptive procedure for three-dimensional fragmentation simulations. Eng Comp 18: 148–159

    Article  Google Scholar 

  • Rice JR (1968). A path independent integral and the approximate analysis of strain concentraction by notches and cracks. J Appl Mech 35: 379–386

    Google Scholar 

  • Rooke DP and Cartwright DJ (1976). Compendium of stress intensity factors. Hillingdon Press, Uxbridge

    Google Scholar 

  • Steinmann P, Ackermann D and Barth FJ (2001). Application of material forces to hyperelastostatic fracture mechanics. II. Computational setting. Int J Solids Struct 38: 5509–5526

    Article  MATH  Google Scholar 

  • Steinmann P, Maugin GA (eds) (2005) Mechanics of material forces. Springer-Verlag

  • Stumpf H and Le KC (1990). Variational principles of nonlinear fracture mechanics. Acta Mechanica 83: 25–37

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Miehe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miehe, C., Gürses, E. & Birkle, M. A computational framework of configurational-force-driven brittle fracture based on incremental energy minimization. Int J Fract 145, 245–259 (2007). https://doi.org/10.1007/s10704-007-9078-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-007-9078-1

Keywords

Navigation