Skip to main content

Advertisement

Log in

The exponentiated Hencky-logarithmic strain energy: part III—coupling with idealized multiplicative isotropic finite strain plasticity

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We investigate an immediate application in finite strain multiplicative plasticity of the family of isotropic volumetric–isochoric decoupled strain energies

$$F \mapsto W_{\rm eH}(F):= \widehat{W}_{\rm eH}(U) := \left\{ \begin{array}{lll} \frac{\mu}{k}\,e^{k\, \| {\rm dev}_n \log {U}\|^2}+\frac{\kappa}{2\, {\widehat{k}}}\,e^{\widehat{k}\,[ {\rm tr}(\log U)]^2}&\quad \text{if}& \det\, F > 0,\\ + \infty & \quad \text{if} & \det F \leq 0,\end{array} \right.$$

based on the Hencky-logarithmic (true, natural) strain tensor \({\log U}\) . Here, \({\mu > 0}\) is the infinitesimal shear modulus, \({\kappa=\frac{2 \mu+3\lambda}{3} > 0}\) is the infinitesimal bulk modulus with λ the first Lamé constant, \({k,\widehat{k}}\) are additional dimensionless material parameters, \({F=\nabla \varphi}\) is the gradient of deformation, \({U=\sqrt{F^T F}}\) is the right stretch tensor, and dev n \({\log {U} =\log {U}-\frac{1}{n}\, {\rm tr}(\log {U})\cdot{\mathbb{1}}}\) is the deviatoric part of the strain tensor \({\log U}\) . Based on the multiplicative decomposition \({F=F_e\, F_p}\) , we couple these energies with some isotropic elasto-plastic flow rules \({F_p\,\frac{\rm d}{{\rm d t}}[F_p^{-1}]\in-\partial \chi({\rm dev}_3 \Sigma_{e})}\) defined in the plastic distortion F p , where \({\partial \chi}\) is the subdifferential of the indicator function \({\chi}\) of the convex elastic domain \({\mathcal{E}_{\rm e}({\Sigma_{e}},\frac{1}{3}{\boldsymbol{\sigma}}_{\mathbf{y}}^2)}\) in the mixed-variant \({\Sigma_{e}}\) -stress space, \({\Sigma_{e}=F_e^T D_{F_e}W_{\rm iso}(F_e)}\) , and \({W_{\rm iso}(F_e)}\) represents the isochoric part of the energy. While \({W_{\rm eH}}\) may loose ellipticity, we show that loss of ellipticity is effectively prevented by the coupling with plasticity, since the ellipticity domain of \({W_{\rm eH}}\) on the one hand and the elastic domain in \({\Sigma_{e}}\) -stress space on the other hand are closely related. Thus, the new formulation remains elliptic in elastic unloading at any given plastic predeformation. In addition, in this domain, the true stress–true strain relation remains monotone, as observed in experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armero F., Simo J.C.: A priori stability estimates and unconditionally stable product formula algorithms for nonlinear coupled thermoplasticity. Int. J. Plast. 9(6), 749–782 (1993)

    Article  MATH  Google Scholar 

  2. Balzani D., Schröder J., Gross D., Neff P.: Modeling of anisotropic damage in arterial walls based on polyconvex stored energy functions. In: Owen, D.R.J., Onate, E., Suarez, B. (eds) Computational Plasticity VIII, Fundamentals and Applications, Part 2, pp. 802–805. CIMNE, Barcelona (2005)

    Google Scholar 

  3. Bertram A.: An alternative approach to finite plasticity based on material isomorphisms. Int. J. Plast. 15(3), 353–374 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertram, A.: Elasticity and Plasticity of Large Deformations: An Introduction. Springer, Berlin (2012)

  5. Bruhns O.T., Xiao H., Mayers A.: Constitutive inequalities for an isotropic elastic strain energy function based on Hencky’s logarithmic strain tensor. Proc. R. Soc. Lond. A 457, 2207–2226 (2001)

    Article  MATH  ADS  Google Scholar 

  6. Bruhns O.T., Xiao H., Mayers A.: Finite bending of a rectangular block of an elastic Hencky material. J. Elast. 66(3), 237–256 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bruhns O.T., Xiao H., Meyers A.: Self-consistent Eulerian rate type elasto-plasticity models based upon the logarithmic stress rate. Int. J. Plast. 15(5), 479–520 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caminero M.A., Montáns F.J., Bathe K.J.: Modeling large strain anisotropic elasto-plasticity with logarithmic strain and stress measures. Comput. Struct. 89(11), 826–843 (2011)

    Article  Google Scholar 

  9. Carstensen C., Hackl K., Mielke A.: Non-convex potentials and microstructures in finite-strain plasticity. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 458, 299–317 (2002)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Cleja-Ţigoiu S.: Consequences of the dissipative restrictions in finite anisotropic elasto-plasticity. Int. J. Plast. 19(11), 1917–1964 (2003)

    Article  MATH  Google Scholar 

  11. Cleja-Ţigoiu S., Iancu L.: Orientational anisotropy and strength-differential effect in orthotropic elasto-plastic materials. Int. J. Plast. 47, 80–110 (2013)

    Article  Google Scholar 

  12. Cleja-Ţigoiu S., Maugin G.A.: Eshelby’s stress tensors in finite elastoplasticity. Acta Mech. 139(1–4), 231–249 (2000)

    Article  MATH  Google Scholar 

  13. Dettmer W., Reese S.: On the theoretical and numerical modelling of Armstrong–Frederick kinematic hardening in the finite strain regime. Comput. Methods Appl. Mech. Eng. 193(1), 87–116 (2004)

    Article  MATH  ADS  Google Scholar 

  14. Dvorkin E.N., Pantuso D., Repetto E.A.: A finite element formulation for finite strain elasto-plastic analysis based on mixed interpolation of tensorial components. Comput. Methods Appl. Mech. Eng. 114(1), 35–54 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  15. Ebobisse F., Neff P.: Existence and uniqueness for rate-independent infinitesimal gradient plasticity with isotropic hardening and plastic spin. Math. Mech. Solids 15(6), 691–703 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Eterovic A.L., Bathe K.-J.: A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic–kinematic hardening using the logarithmic stress and strain measures. Int. J. Numer. Methods Eng. 30, 1099–1114 (1990)

    Article  MATH  Google Scholar 

  17. Gabriel G., Bathe K.J.: Some computational issues in large strain elasto-plastic analysis. Comput. Struct. 56(2), 249–267 (1995)

    Article  MATH  Google Scholar 

  18. Ghiba I.D., Neff P., Martin R.J.: On the rank-one convexity domain for isochoric, isotropic and quadratic energies defined in logarithmic strain tensor (in preparation) (2015)

  19. Ghiba, I.D., Neff, P., Šilhavý, M.: The exponentiated Hencky-logarithmic strain energy. Improvement of planar polyconvexity. Int. J. Non-Linear Mech. 71, 48–51 (2015)

  20. Geers M.G.D.: Finite strain logarithmic hyperelasto-plasticity with softening: a strongly non-local implicit gradient framework. Comput. Methods Appl. Mech. Eng. 193(30), 3377–3401 (2004)

    Article  MATH  ADS  Google Scholar 

  21. Glüge R., Kalisch J.: Graphical representations of the regions of rank-one-convexity of some strain energies. Tech. Mech. 32, 227–237 (2012)

    Google Scholar 

  22. Gupta A., Steigmann D.J., Stölken J.S.: On the evolution of plasticity and incompatibility. Math. Mech. Solids 12(6), 583–610 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gupta A., Steigmann D.J., Stölken J.S.: Aspects of the phenomenological theory of elastic–plastic deformation. J. Elast. 104(1–2), 249–266 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gurtin M.E., Spear K.: On the relationship between the logarithmic strain rate and the stretching tensor. Int. J. Solids Struct. 19(5), 437–444 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hanin M., Reiner M.: On isotropic tensor-functions and the measure of deformation. Z. Angew. Math. Phys. 7(5), 377–393 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  26. Heiduschke K.: The logarithmic strain space description. Int. J. Solids Struct. 32(8), 1047–1062 (1995)

    Article  MATH  Google Scholar 

  27. Heiduschke K.: Computational aspects of the logarithmic strain space description. Int. J. Solids Struct. 33(5), 747–760 (1996)

    Article  MATH  Google Scholar 

  28. Henann D., Anand L.: A large deformation theory for rate-dependent elastic–plastic materials with combined isotropic and kinematic hardening. Int. J. Plast. 25(10), 1833–1878 (2009)

    Article  Google Scholar 

  29. Horák, M., Jirásek, M.: An extension of small-strain models to the large-strain range based on an additive decomposition of a logarithmic strain. In: Chleboun, J., Segeth, K., Šıstek, J., Vejchodskỳ, T. (eds.) Programs and Algorithms of Numerical Mathematics, vol. 16, pp. 88–93 (2013)

  30. Hutchinson, J.W., Neale, K.W.: Finite strain J 2-deformation theory. In: Carlson, D.E., Shield, R.T. (eds.) Proceedings of the IUTAM Symposium on Finite Elasticity, pp. 237–247. Martinus Nijhoff (1982) https://www.uni-due.de/imperia/md/content/mathematik/ag_neff/hutchinson_ellipticity80.

  31. Jog C.S.: Foundations and Applications of Mechanics: Continuum Mechanics, vol. 1. CRC Press, Boca Raton (2002)

    Google Scholar 

  32. Jog C.S.: On the explicit determination of the polar decomposition in n-dimensional vector spaces. J. Elast. 66(2), 159–169 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jog C.S., Patil K.D.: Conditions for the onset of elastic and material instabilities in hyperelastic materials. Arch. Appl. Mech. 83, 1–24 (2013)

    Article  MATH  Google Scholar 

  34. Krishnan J., Steigmann D.: A polyconvex formulation of isotropic elastoplasticity theory. IMA J. Appl. Math. 79, 722–738 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kröner E.: Der fundamentale Zusammenhang zwischen Versetzungsdichte und Spannungsfunktionen. Z. Angew. Math. Phys. 142(4), 463–475 (1955)

    MathSciNet  MATH  Google Scholar 

  36. Kröner E.: Kontinuumstheorie der Versetzungen und Eigenspannungen. Springer, Berlin (1958)

    Book  MATH  Google Scholar 

  37. Kröner, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Rat. Mech. Anal. 4(1), 273–334 (1959)

  38. Lankeit J., , Neff P., Nakatsukasa Y.: The minimization of matrix logarithms: on a fundamental property of the unitary polar factor. Linear Algebra Appl. 449(0), 28–42 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lankeit J., Neff P., Pauly D.: Uniqueness of integrable solutions to \({\bigtriangledown \zeta=G \zeta,\ \zeta|_{\Gamma}=0}\) for integrable tensor coefficients G and applications to elasticity. Z. Angew. Math. Phys. 64, 1679–1688 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lee, E.H.: Elastic–plastic deformation at finite strains. J. Appl. Mech. 36(1), 1–6 (1969)

  41. Martin, R.J., Neff, P.: Minimal geodesics on GL(n) for left-invariant, right-O(n)-invariant Riemannian metrics. Preprint arXiv:1409.7849 (2014)

  42. Masud A., Panahandeh M., Aurrichio F.: A finite-strain finite element model for the pseudoelastic behavior of shape memory alloys. Comput. Methods Appl. Mech. Eng. 148(1), 23–37 (1997)

    Article  MATH  ADS  Google Scholar 

  43. Maugin G.: Eshelby stress in elastoplasticity and ductile fracture. Int. J. Plast. 10(4), 393–408 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  44. Meyers A.: On the consistency of some Eulerian strain rates. Z. Angew. Math. Mech. 79(3), 171–177 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  45. Meyers A., Xiao H., Bruhns O.T.: Choice of objective rate in single parameter hypoelastic deformation cycles. Comput. Struct. 84(17), 1134–1140 (2006)

    Article  Google Scholar 

  46. Miehe, C.: Kanonische Modelle multiplikativer Elasto-Plastizität. Thermodynamische Formulierung und numerische Implementation. Habilitationsschrift, Universität Hannover, Germany (1992)

  47. Miehe C.: On the representation of Prandtl–Reuss tensors within the framework of multiplicative elastoplasticity. Int. J. Plast. 10(6), 609–621 (1994)

    Article  MATH  Google Scholar 

  48. Miehe C.: Variational gradient plasticity at finite strains. Part I: mixed potentials for the evolution and update problems of gradient-extended dissipative solids. Comput. Methods Appl. Mech. Eng. 268, 677–703 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  49. Miehe C., Apel N., Lambrecht M.: Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials. Comput. Methods Appl. Mech. Eng. 191(47), 5383–5425 (2002)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  50. Miehe C., Welschinger F., Aldakheel F.: Variational gradient plasticity at finite strains. Part II: local–global updates and mixed finite elements for additive plasticity in the logarithmic strain space. Comput. Methods Appl. Mech. Eng. 268, 704–734 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  51. Mielke A.: Finite elastoplasticity Lie groups and geodesics on SL (d). In: Newton, P., Holmes, P., Weinstein, A. (eds) Geometry, Mechanics, and Dynamics, pp. 61–90. Springer, Berlin (2002)

  52. Mielke A.: Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Contin. Mech. Thermodyn. 15(4), 351–382 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  53. Montella, G., Govindjee, S., Neff, P.: The exponentiated-Hencky strain energy in modeling tire derived material for moderately large deformation (submitted) (2015)

  54. Mosler J., Ortiz M.: Variational h-adaption in finite deformation elasticity and plasticity. Int. J. Numer. Methods Eng. 72(5), 505–523 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. Müller Ch., Bruhns O.T.: A thermodynamic finite-strain model for pseudoelastic shape memory alloys. Int. J. Plast. 22(9), 1658–1682 (2006)

    Article  MATH  Google Scholar 

  56. Naghdabadi R., Baghani M., Arghavani J.: A viscoelastic constitutive model for compressible polymers based on logarithmic strain and its finite element implementation. Finite Elem. Anal. Des. 62, 18–27 (2012)

    Article  MathSciNet  Google Scholar 

  57. Neff, P.: Mathematische analyse multiplikativer Viskoplastizität. Ph.D. thesis, Technische Universität Darmstadt. Shaker Verlag. ISBN:3-8265-7560-1. https://www.uni-due.de/~hm0014/Download_files/cism_convexity08. Aachen (2000)

  58. Neff P.: On Korn’s first inequality with nonconstant coefficients. Proc. Roy. Soc. Edinb. A 132, 221–243 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  59. Neff P.: Finite multiplicative plasticity for small elastic strains with linear balance equations and grain boundary relaxation. Contin. Mech. Thermodyn. 15(2), 161–195 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  60. Neff, P.: Some results concerning the mathematical treatment of finite plasticity. In: Deformation and Failure in Metallic Materials, pp. 251–274. Springer (2003)

  61. Neff P.: Local existence and uniqueness for quasistatic finite plasticity with grain boundary relaxation. Q. Appl. Math. 63, 88–116 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  62. Neff P.: A finite-strain elastic–plastic Cosserat theory for polycrystals with grain rotations. Int. J. Eng. Sci. 44, 574–594 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  63. Neff P., Chełmiński K., Alber H.D.: Notes on strain gradient plasticity: finite strain covariant modelling and global existence in the infinitesimal rate-independent case. Math. Mod. Methods Appl. Sci. 19, 307–346 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  64. Neff P., Chełmiński K., Müller W., Wieners C.: A numerical solution method for an infinitesimal elasto-plastic Cosserat model. Math. Mod. Methods Appl. Sci. 17(08), 1211–1239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  65. Neff, P., Eidel, B., Martin, R.J: Geometry of logarithmic strain measures in solid mechanics (submitted) (2015)

  66. Neff P., Eidel B., Osterbrink F., Martin R.J.: The Hencky strain energy \({\|\log {U}\|^2}\) measures the geodesic distance of the deformation gradient to SO(3) in the canonical left-invariant Riemannian metric on GL(3). PAMM 13(1), 369–370 (2013)

    Article  Google Scholar 

  67. Neff, P., Ghiba, I.D.: Loss of ellipticity in additive logarithmic finite strain plasticity. arXiv:1410.2819 (submitted) (2014)

  68. Neff, P., Ghiba, I.D., Lankeit, J.: The exponentiated Hencky-logarithmic strain energy. Part I: constitutive issues and rank-one convexity. J. Elast. (2015). doi:10.1007/s10659-015-9524-7

  69. Neff, P., Ghiba, I.D., Lankeit, J., Martin, R.J., Steigmann, D.: The exponentiated Hencky-logarithmic strain energy. Part II: coercivity, planar polyconvexity and existence of minimizers. Z. Angew. Math. Phys. arXiv:1408.4430 (2015). doi:10.1007/s00033-015-0495-0

  70. Neff P., Knees D.: Regularity up to the boundary for nonlinear elliptic systems arising in time-incremental infinitesimal elasto-plasticity. SIAM J. Math. Anal. 40(1), 21–43 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  71. Neff P., Müller W., Wieners C.: Parallel simulation of an infinitesimal elasto-plastic Cosserat model. GAMM-Mitteilungen 33(1), 79–94 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  72. Neff P., Nakatsukasa Y., Fischle A.: A logarithmic minimization property of the unitary polar factor in the spectral norm and the Frobenius matrix norm. SIAM J. Matrix Anal. 35, 1132–1154 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  73. Neff P., Sydow A., Wieners C.: Numerical approximation of incremental infinitesimal gradient plasticity. Int. J. Numer. Methods Eng. 77(3), 414–436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  74. Neff P., Wieners C.: Comparison of models for finite plasticity. A numerical study. Comput. Vis. Sci. 6, 23–35 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  75. Ogden R.W.: Compressible isotropic elastic solids under finite strain-constitutive inequalities. Q. J. Mech. Appl. Math. 23(4), 457–468 (1970)

    Article  MATH  Google Scholar 

  76. Ogden, R.W.: Non-linear Elastic Deformations. Mathematics and its Applications, vol. 1. Ellis Horwood, Chichester (1983)

  77. Papadopoulos P., Lu J.: A general framework for the numerical solution of problems in finite elasto-plasticity. Comput. Methods Appl. Mech. Eng. 159(1), 1–18 (1998)

    Article  MATH  ADS  Google Scholar 

  78. Perić D., Souza Neto E.A.: A new computational model for Tresca plasticity at finite strains with an optimal parametrization in the principal space. Comput. Methods Appl. Mech. Eng. 171(3), 463–489 (1999)

    MATH  ADS  Google Scholar 

  79. Perić D., Owen D.R.J., Honnor M.E.: A model for finite strain elasto-plasticity based on logarithmic strains: computational issues. Comput. Methods Appl. Mech. Eng. 94(1), 35–61 (1992)

    Article  MATH  ADS  Google Scholar 

  80. Raoult A.: Non-polyconvexity of the stored energy function of a St.Venant–Kirchhoff material. Aplikace Matematiky 6, 417–419 (1986)

    MathSciNet  MATH  Google Scholar 

  81. Reese S., Christ D.: Finite deformation pseudo-elasticity of shape memory alloys—constitutive modelling and finite element implementation. Int. J. Plast. 24(3), 455–482 (2008)

    Article  MATH  Google Scholar 

  82. Reese S., Wriggers P.: A material model for rubber-like polymers exhibiting plastic deformation: computational aspects and a comparison with experimental results. Comput. Methods Appl. Mech. Eng. 148, 279–298 (1997)

    Article  MATH  ADS  Google Scholar 

  83. Sansour C.: On the dual variable of the logarithmic strain tensor, the dual variable of the Cauchy stress tensor, and related issues. Int. J. Solids Struct. 38(50), 9221–9232 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  84. Sansour C.: On the physical assumptions underlying the volumetric–isochoric split and the case of anisotropy. Eur. J. Mech. A Solids 27(1), 28–39 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  85. Sansour C., Wagner W.: Viscoplasticity based on additive decomposition of logarithmic strain and unified constitutive equations: theoretical and computational considerations with reference to shell applications. Comput. Struct. 81(15), 1583–1594 (2003)

    Article  Google Scholar 

  86. Schröder, J., Neff, P.: Poly, quasi and rank-one convexity in mechanics. CISM-Course Udine. Springer (2009)

  87. Shutov A.V., Ihlemann J.: Analysis of some basic approaches to finite strain elasto-plasticity in view of reference change. Int. J. Plast 63, 183–197 (2014)

    Article  Google Scholar 

  88. Shutov A.V., Kreißig R.: Finite strain viscoplasticity with nonlinear kinematic hardening: phenomenological modeling and time integration. Comput. Methods Appl. Mech. Eng. 197(21), 2015–2029 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  89. Simo J.C.: Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comput. Methods Appl. Mech. Eng. 99(1), 61–112 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  90. Simo J.C.: Recent developments in the numerical analysis of plasticity. In: Stein, E. (eds) Progress in Computational Analysis of Inelastic Structures., pp. 115–173. Springer, New York (1993)

    Chapter  Google Scholar 

  91. Simo J.C.: Numerical analysis and simulation of plasticity. In: Ciarlet, P.G., Lions, J.L. (eds) Handbook of Numerical Analysis, vol. VI, Elsevier, Amsterdam (1998)

    Google Scholar 

  92. Simo, J.C., Hughes, J.R.: Computational Inelasticity, vol. 7, Interdisciplinary Applied Mathematics. Springer, Berlin (1998)

  93. Simo J.C., Ortiz M.: A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations. Comput. Methods Appl. Mech. Eng. 49, 221–245 (1985)

    Article  MATH  ADS  Google Scholar 

  94. Steigmann D.J., Gupta A.: Mechanically equivalent elastic–plastic deformations and the problem of plastic spin. Theor. Appl. Mech. 38(4), 397–417 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  95. Tanaka E.: Finite element investigation of the problem of large strains, formulated in terms of true stress and logarithmic strain. Acta Mech. 34(1–2), 129–141 (1979)

    Article  MATH  Google Scholar 

  96. Vallée C.: Lois de comportement élastique isotropes en grandes déformations. Int. J. Eng. Sci. 16(7), 451–457 (1978)

    Article  MATH  Google Scholar 

  97. Vallée C., Fortuné D., Lerintiu C.: On the dual variable of the Cauchy stress tensor in isotropic finite hyperelasticity. Comptes Rendus Mecanique 336(11), 851–855 (2008)

    Article  MATH  ADS  Google Scholar 

  98. Xiao H., Bruhns O., Meyers A.: A consistent finite elastoplasticity theory combining additive and multiplicative decomposition of the stretching and the deformation gradient. Int. J. Plast. 16(2), 143–177 (2000)

    Article  MATH  Google Scholar 

  99. Xiao H., Bruhns O.T., Meyers A.: Existence and uniqueness of the integrable-exactly hypoelastic equation \({{\tau}^{\circ}=\lambda ({\rm tr} D){\rm {I}}+ 2\mu {D}}\) and its significance to finite inelasticity. Acta Mech. 138(1–2), 31–50 (1999)

    Article  MATH  Google Scholar 

  100. Xiao H., Bruhns O.T., Meyers A.: Elastoplasticity beyond small deformations. Acta Mech. 182(1–2), 31–111 (2006)

    Article  MATH  Google Scholar 

  101. Zhu Y., Kang G., Kan Q., Bruhns O.: Logarithmic stress rate based constitutive model for cyclic loading in finite plasticity. Int. J. Plast. 54, 34–55 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ionel-Dumitrel Ghiba.

Additional information

Communicated by Victor Eremeyev, Peter Schiavone and Francesco dell'Isola.

Dedicated to David J. Steigmann, a great scientist and good friend.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neff, P., Ghiba, ID. The exponentiated Hencky-logarithmic strain energy: part III—coupling with idealized multiplicative isotropic finite strain plasticity. Continuum Mech. Thermodyn. 28, 477–487 (2016). https://doi.org/10.1007/s00161-015-0449-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-015-0449-y

Keywords

Navigation