Skip to main content
Log in

Conditions for the onset of elastic and material instabilities in hyperelastic materials

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Several constitutive inequalities have been proposed in the literature to quantify the notion that ‘stress increases with strain’ in an elastic material. Due to some inherent shortcomings in them, which we discuss, we propose a new tensorial criterion for isotropic materials. We also present necessary conditions in terms of elasticity tensors for the onset of elastic instabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball J.M., Schaeffer D.G.: Bifurcation and stability of homogeneous equilibrium configurations of an elastic body under dead-load tractions. Math. Proc. Camb. Phil. Soc. 94, 315–339 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bischoff J.E., Arruda E.M., Grosh K.: A new constitutive model for the compressibility of elastomers at finite deformations. Rubber Chem. Technol. 74(4), 541–559 (2001)

    Article  Google Scholar 

  3. Bruhns O.T., Xiao H., Meyers A.: Constitutive inequalities for an isotropic elastic strain-energy function based on Hencky’s logarithmic strain tensor. Proc. R. Soc. Lond. Ser. A 457, 2207–2226 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen Y.C.: Stability of homogeneous deformations of an incompressible elastic body under dead-load surface tractions. J. Elast 17, 223–248 (1987)

    Article  MATH  Google Scholar 

  5. Ciarlet, P.G.:Three-Dimensional Elasticity. Elsevier Science Publishers B.V. North Holland (1988)

  6. Gurtin M.E.: An Introduction to Continuum Mechanics. Academic Press, London (1981)

    MATH  Google Scholar 

  7. Hill R.: On uniqueness and stability in the theory of finite elastic strain. J. Mech. Phys. Solids 5, 229–241 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hill R.: Constitutive inequalities for isotropic elastic solids under finite strain. Proc. R. Soc. Lond. Ser. A 314, 457–472 (1970)

    Article  MATH  Google Scholar 

  9. Hoger A.: The stress conjugate to logarithmic strain. Int. J. Solids Struct. 23(12), 1645–1656 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jog, C.S.:Foundations and Applications of Mechanics: Continuum Mechanics, vol. I. Alpha Science International Limited, Oxford, U.K. (2007)

  11. Jog C.S.: The explicit determination of the logarithm of a tensor and its derivatives. J. Elast 93(2), 141–148 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kearsly E.A.: Asymmetric stretching of a symmetrically loaded elastic sheet. J. Elasticity 22(2), 111–119 (1986)

    Google Scholar 

  13. Knowles J.K., Sternberg E.: On the ellipticity of the equations of nonlinear elastostatics for a special material. J. Elast 5(3–4), 341–361 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Krawietz A.: A comprehensive constitutive inequality in finite elastic strain. Arch. Ration. Mech. Anal. 58, 127–149 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu I. S.: Continuum Mechanics. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  16. MacSithigh G.P.: Energy-minimal finite deformations of a symmetrically loaded elastic sheet. Q. J. Mech. Appl. Math. 39(1), 111–124 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Marsden J.E., Hughes T.J.R.: Mathematical Foundations of Elasticity. Prentice-Hall Inc., Englewood Cliffs (1983)

    MATH  Google Scholar 

  18. Muller I.: Two instructive instabilities in non-linear elasticity: biaxially loaded membrane, and rubber balloons. Meccanica 31, 387–395 (1996)

    Article  Google Scholar 

  19. Nadeau J.C., Ferrari M.: Invariant tensor-to-matrix mappings for evaluation of tensor expressions. J. Elast. 52, 43–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ogden R.W.: Nonlinear Elastic Deformations. Ellis Horwood, New York (1984)

    MATH  Google Scholar 

  21. Piero G.D.: Some properties of the set of fourth-order tensors, with application to elasticity. J. Elast. 9(3), 245–261 (1979)

    Article  MATH  Google Scholar 

  22. Reese S., Wriggers P.: Material instabilities of an incompressible elastic cube under triaxial tension. Int. J. Solids Struct 34(26), 3433–3454 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rivlin R.S., Beatty M.F.: Dead loading of a unit cube of compressible isotropic elastic material. Z. Angew Math. Phys. 54, 954–963 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Silhavy M.: The Mechanics and Thermodynamics of Continuous Media. Springer, Berlin (1997)

    MATH  Google Scholar 

  25. Tarantino A. M.: Homogeneous equilibrium configurations of a hyperelastic compressible cube under equitriaxial dead-load tractions. J. Elast 99, 227–254 (2008)

    Article  MathSciNet  Google Scholar 

  26. Truesdell, C., Noll, W.: The Non-linear Field Theories of Mechanics,Handbuch der Physik 3 . Springer, Berlin (1965)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Jog.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jog, C.S., Patil, K.D. Conditions for the onset of elastic and material instabilities in hyperelastic materials. Arch Appl Mech 83, 661–684 (2013). https://doi.org/10.1007/s00419-012-0711-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-012-0711-8

Keywords

Navigation