Skip to main content
Log in

Wave reflection at a free interface in an anisotropic pyroelectric medium with nonclassical thermoelasticity

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In this paper, the well-established two-dimensional mathematical model for linear pyroelectric materials is employed to investigate the reflection of waves at the boundary between a vacuum and an elastic, transversely isotropic, pyroelectric material. A comparative study between the solutions of (a) classical thermoelasticity, (b) Cattaneo–Lord–Shulman theory and (c) Green–Lindsay theory equations, characterised by none, one and two relaxation times, respectively, is presented. Suitable boundary conditions are considered in order to determine the reflection coefficients when incident elasto–electro–thermal waves impinge the free interface. It is established that, in the quasi-electrostatic approximation, three different classes of waves: (1) two principally elastic waves, namely a quasi-longitudinal Primary (qP) wave and a quasi-transverse Secondary (qS) wave; and (2) a mainly thermal (qT) wave. The observed electrical effects are, on the other hand, a direct consequence of mechanical and thermal phenomena due to pyroelectric coupling. The computed reflection coefficients of plane qP waves are found to depend upon the angle of incidence, the elastic, electric and thermal parameters of the medium, as well as the thermal relaxation times. The special cases of normal and grazing incidence are also derived and discussed. Finally, the reflection coefficients are computed for cadmium selenide observing the influence of (1) the anisotropy of the material, (2) the electrical potential and (3) temperature variations and (4) the thermal relaxation times on the reflection coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abd-alla A.N., Yahia A., Abo-dahab S.: On the reflection of the generalized magneto–thermo–viscoelastic plane waves. Chaos Solitons Fractals 16, 211–231 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Abd-Alla A.N., Abo-dahab S.M.: The influence of the viscosity on reflection and refraction of plane shear elastic waves in two magnetized semi-infinite media is investigated. Meccanica 43(4), 437–448 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abd-alla A.N., Al-sheikh F.A., Al-Hossain A.Y.: The reflection phenomena of quasi-vertical transverse waves in piezoelectric medium under initial stresses. Meccanica 47(3), 731–744 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abd-alla A.N., Al-Hossain A.Y., Elhaes H., Ibrahim M.: Reflection and refraction of waves in nano-smart materials: anisotropic thermo-piezoelectric materials. J. Comput. Theor. Nanosci. 11(3), 715–726 (2014)

    Article  Google Scholar 

  5. Abd-alla A.N., Hamdan A.M., Giorgio I., Del Vescovo D.: The mathematical model of reflection and refraction of longitudinal waves in thermo-piezoelectric materials. Arch. Appl. Mech. (2014). doi:10.1007/s00419-014-0852-z

    Google Scholar 

  6. Achenbach J.D.: Wave Propagation in Elastic Solids. North-Holland Series in Applied Mathematics and Mechanics 16. North-Holland, New York (1973)

    Google Scholar 

  7. Andreaus U., Chiaia B., Placidi L.: Soft-impact dynamics of deformable bodies. Contin. Mech. Thermodyn. 25, 375–398 (2013). doi:10.1007/s00161-012-0266-5

    Article  MathSciNet  ADS  Google Scholar 

  8. Andreaus U., dell’Isola F., Porfiri M.: Piezoelectric passive distributed controllers for beam flexural vibrations. J. Vib. Control 10(5), 625–659 (2004)

    Article  MATH  Google Scholar 

  9. Auld B.: Acoustic Field and Waves in Solids. R. E. Krieger Pub. Com., Malabar (1990)

    Google Scholar 

  10. Berezovski A., Maugin G.A.: Thermoelastic wave and front propagation. J. Therm. Stress. 25(8), 719–743 (2002)

    Article  MathSciNet  Google Scholar 

  11. Boehler J.P.: Representations for isotropic and anisotropic non-polynomial tensor functions. In: Boehler, J.P. (ed.) Applications of Tensor Functions in Solid Mechanics, CISM Courses and Lectures, pp. 31–53. Springer, Wien (1987)

  12. Carcaterra A., Roveri N., Pepe G.: Fractional dissipation generated by hidden wave-fields. Math. Mech. Solids (2014). doi:10.1177/1081286513518941

    MathSciNet  Google Scholar 

  13. Carcaterra A., Roveri N.: Energy distribution in impulsively excited structures. Shock Vib. 19(5), 1143–1163 (2012)

    Article  Google Scholar 

  14. Cazzani A., Lovadina C.: On some mixed finite element methods for plane membrane problems. Comput. Mech. 20(6), 560–572 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cuomo, M., Greco, L.: Isogeometric analysis of space rods: Considerations on stress locking. ECCOMAS 2012—European congress on computational methods in applied sciences and engineering, e-Book Full Papers, 5094–5112 (2012)

  16. dell’Isola F., Madeo A., Seppecher P.: Boundary conditions at fluid-permeable interfaces in porous media: a variational approach. Int. J. Solids Struct. 46(17), 3150–3164 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. dell’Isola F., Madeo A., Placidi L.: Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D Continua. ZAMM-J. Appl. Math. Mech. 92(1), 52–71 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. dell’Isola F., Sciarra G., Vidoli S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. A: Math. Phys. Eng. Sci. 465(2107), 2177–2196 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. dell’Isola F., Vidoli S.: Continuum modelling of piezoelectromechanical truss beams: an application to vibration damping. Arch. Appl. Mech. 68(1), 1–19 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Del Vescovo D., Giorgio I.: Dynamic problems for metamaterials: review of existing models and ideas for further research. Int. J. Eng. Sci. (2014). doi:10.1016/j.ijengsci.2014.02.022

    MathSciNet  Google Scholar 

  21. Eremeyev V.A.: Acceleration waves in micropolar elastic media. Dokl. Phys. 50(4), 204–206 (2005)

    Article  ADS  Google Scholar 

  22. Greco L., Cuomo M.: B-Spline interpolation of Kirchhoff–Love space rods. Comput. Methods Appl. Mech. Eng. 256, 251–269 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  23. Greco L., Cuomo M.: An implicit G1 multi patch B-spline interpolation for Kirchhoff–Love space rod. Comput. Methods Appl. Mech. Eng. 269, 173–197 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Green A., Lindsay K.A.: Thermoelasticity. J. Elast. 2, 1–7 (1972)

    Article  MATH  Google Scholar 

  25. Guo S.H.: The thermo-electromagnetic waves in piezoelectric solids. Acta Mech. 219, 231–240 (2011)

    Article  MATH  Google Scholar 

  26. Huang H.T., Zhou L.M.: Micromechanics approach to the magnetoelectric properties of laminate and fibrous piezoelectric/magnetostrictive composites. J. Phys. D: Appl. Phys. 37, 3361–3366 (2004)

    Article  ADS  Google Scholar 

  27. Keith C.M., Crampin S.: Seismic body waves in anisotropic media: reflection and refraction at a plane interface. Geophys. J. R. Astron. Soc. 49(1), 181–208 (1977)

    Article  ADS  Google Scholar 

  28. Kumar R., Kumar R.: Wave propagation at the boundary surface of elastic and initially stressed visco-thermoelastic diffusion with voids media. Meccanica 48(9), 2173–2188 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kuang Z.B., Yuan X.G.: Reflection and transmission of waves in pyroelectric and piezoelectric materials. J. Sound Vib. 330(6), 1111–1120 (2011)

    Article  ADS  Google Scholar 

  30. Lord H.W., Shulman Y.: A generalized theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    Article  ADS  MATH  Google Scholar 

  31. Lubarda V.A., Chen M.C.: On the elastic moduli and compliances of transversely isotropic and orthotropic materials. J. Mech. Mater. Struct. 3(1), 153–171 (2008)

    Article  Google Scholar 

  32. Luongo A., Paolone A., Piccardo G.: Postcritical behavior of cables undergoing two simultaneous galloping modes. Meccanica 33(3), 229–242 (1998)

    Article  MATH  Google Scholar 

  33. Luongo A., Piccardo G.: Linear instability mechanisms for coupled translational galloping. J. Sound Vib. 288(4–5), 1027–1047 (2005)

    Article  ADS  Google Scholar 

  34. Madeo A., Neff P., Ghiba I.D., Placidi L., Rosi G.: Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps. Contin. Mech. Thermodyn. (2013). doi:10.1007/s00161-013-0329-2

    MathSciNet  MATH  Google Scholar 

  35. Maurini C., Pouget J., dell’Isola F.: On a model of layered piezoelectric beams including transverse stress effect. Int. J. Solids Struct. 41(16–17), 4473–4502 (2004)

    Article  MATH  Google Scholar 

  36. Maurini C., Pouget J., dell’Isola F.: Extension of the Euler–Bernoulli model of piezoelectric laminates to include 3D effects via a mixed approach. Comput. Struct. 84(22–23), 1438–1458 (2006)

    Article  Google Scholar 

  37. Madeo A., Djeran-Maigre I., Rosi G., Silvani C.: The effect of fluid streams in porous media on acoustic compression wave propagation, transmission, and reflection. Contin. Mech. Thermodyn. 6, 1–24 (2012)

    MathSciNet  Google Scholar 

  38. Madeo A., dell’Isola F., Darve F.: A continuum model for deformable, second gradient porous media partially saturated with compressible fluids. J. Mech. Phys. Solids 61(11), 2196–2211 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  39. Misra A., Marangos O.: Parametric studies of wave propagation through imperfect interfaces using micromechanics based effective stiffness. Rev. Prog. Quant. Nondestruct. Eval. 27, 1074–1081 (2008)

    Article  ADS  Google Scholar 

  40. Misra A., Marangos O.: Effect of contact viscosity and roughness on interface stiffness and wave propagation. Rev. Prog. Quant. Nondestruct. Eval. 28A, 105–112 (2009)

    Article  ADS  Google Scholar 

  41. Nayfeh A.H.: Wave Propagation in Layered Anisotropic Media. North-Holland, Amsterdam (1995)

    MATH  Google Scholar 

  42. Neff P., Ghiba I.D., Madeo A., Placidi L., Rosi G.: A unifying perspective: the relaxed linear micromorphic continuum. Contin. Mech. Thermodyn. (2013). doi:10.1007/s00161-013-0322-9

    MathSciNet  MATH  Google Scholar 

  43. Othman M.I.A., Song Y.Q.: Reflection of magneto–thermo–elastic waves from a rotating elastic half-space. Int. J. Eng. Sci. 46(5), 459–474 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Parton V., Kudryavtsev B.: Electromagnetoelasticity: Piezoelectrics and Electrically Conductive Solids. Gordon and Breach, NY (1988)

    Google Scholar 

  45. Placidi L., Hutter K.: An anisotropic flow law for incompressible polycrystalline materials. Zeitschrift Für Angewandte Mathematik und Physik - ZAMP 57, 160–181 (2006). doi:10.1007/s00033-005-0008-7

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Placidi L., dell’Isola F., Ianiro N., Sciarra G.: Variational formulation of pre-stressed solid–fluid mixture theory, with an application to wave phenomena. Eur. J. Mech. A/Solids 27, 582–606 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Placidi L., Greve R., Seddik H., Faria S.H.: Continuum-mechanical, anisotropic flow model, based on an anisotropic flow enhancement factor. Contin. Mech. Thermodyn. 22, 221–237 (2010). doi:10.1007/s00161-009-0126-0

    Article  ADS  MATH  Google Scholar 

  48. Placidi L., Rosi G., Giorgio I., Madeo A.: Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Math. Mech. Solids 19(5), 555–578 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Placidi L.: A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Contin. Mech. Thermodyn. (2014). doi:10.1007/s00161-14-0338-9

    MathSciNet  Google Scholar 

  50. Quiligotti S., Maugin G.A., dell’Isola F.: Wave motions in unbounded poroelastic solids infused with compressible fluids. Zeitschrift Für Angewandte Mathematik und Physik - ZAMP 53(6), 1110–1113 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. Reccia E., Cazzani A., Cecchi A.: FEM–DEM modeling for out-of-plane loaded masonry panels: a limit analysis approach. Open Civ. Eng. J. 6(1), 231–238 (2012)

    Article  Google Scholar 

  52. Rosi G., Madeo A., Guyader J.L.: Switch between fast and slow Biot compression waves induced by second gradient microstructure at material discontinuity surfaces in porous media. Int. J. Solids Struct. 50(10), 1721–1746 (2013)

    Article  Google Scholar 

  53. Rosi G., Giorgio I., Eremeyev V.A.: Propagation of linear compression waves through plane interfacial layers and mass adsorption in second gradient fluids. ZAMM-J. Appl. Math. Mech. 93(12), 914–927 (2013). doi:10.1002/zamm.201200285

    Article  MathSciNet  Google Scholar 

  54. Royer D., Dieulesaint E.: Elastic Waves in Solids I, Free and Guided Propagation. Springer, Berlin (2000)

    MATH  Google Scholar 

  55. Rupender K.R.: Propagation of waves in an electro-microstretch generalized thermoelastic semi-space. Acta Mech. Sin. 25(5), 619–628 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. Ryu J., Shashank P., Kenji U., Kim H.: Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. J. Electroceram. 8, 107–119 (2002)

    Article  Google Scholar 

  57. Sharma J.N., Kumar V., Chand D.: Reflection of generalized thermoelastic waves from boundary of a half-space. J. Therm. Stress. 26, 925–942 (2003)

    Article  Google Scholar 

  58. Sharma J.N., Walia V., Gupta S.K.: Reflection of piezothermoelastic waves from the charge and stress free boundary of a transversely isotropic half space. Int. J. Eng. Sci. 46(2), 131–146 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  59. Sharma J.N., Walia V., Gupta S.K.: Effect of rotation and thermal relaxation on Rayleigh waves in piezothermoelastic half space. Int. J. Mech. Sci. 50, 433–444 (2008)

    Article  MATH  Google Scholar 

  60. Singh B.: On the theory of generalized thermoelasticity for piezoelectric materials. Appl. Math. Comput. 171(1), 398–405 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  61. Singh B.: Wave propagation in a prestressed piezoelectric half-space. Acta Mech. 211(3–4), 337–344 (2010)

    Article  MATH  Google Scholar 

  62. Singh S.S.: Transverse wave at a plane interface in thermo-elastic materials with voids. Meccanica 48(3), 617–630 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  63. Song Y.Q., Bai J.T., Ren Z.Y.: Study on the reflection of photothermal waves in a semi-conducting medium under generalized thermoelastic theory. Acta Mech. 223, 1545–1557 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  64. Srinivasan G., Laletsin V.M.: Giant magnetoelectric effects in layered composites of nicked zinc ferrite and lead zirconate titanate. Solid State Commun. 124, 373–378 (2002)

    Article  ADS  Google Scholar 

  65. Sciarra G., dell’Isola F., Ianiro N., Madeo A.: A variational deduction of second gradient poroelasticity part I: general theory. J. Mech. Mater. Struct. 3(3), 507–526 (2008)

    Article  Google Scholar 

  66. Spencer A.J.M.: The formulation of constitutive equation for anisotropic solids. In: Boehler, J.P. (ed.) Mechanical Behavior of Anisotropic Solids, pp. 2–26. Martinus Nijhoff Publishers, The Hague (1982)

    Google Scholar 

  67. Tomar S.K., Khurana A.: Elastic waves in an electro-microelastic solid. Int. J. Solids Struct. 45, 278–302 (2008)

    Article  MATH  Google Scholar 

  68. Van Suchtelen J.: Product properties: a new application of composite materials. Philips Res. Rep. 27, 28–37 (1972)

    Google Scholar 

  69. Vidoli S., dell’Isola F.: Vibration control in plates by uniformly distributed PZT actuators interconnected via electric networks. Eur. J. Mech. A/Solids 20(3), 435–456 (2001)

    Article  ADS  MATH  Google Scholar 

  70. Wu, L.: Piezoelectric Thin Film: Fabrication, Properties and Applications. Proceeding of The Second Symposium on Piezoelectricity, Acoustic Waves, and Device Applications 5 (2007)

  71. Yang J.: The Mechanics of Piezoelectric Structures. World Scientific Publishing Co., Singapore (2008)

    Google Scholar 

  72. Yang J.: An Introduction to the Theory of Piezoelectricity. Springer, Boston (2005)

    MATH  Google Scholar 

  73. Yuan X., Kuang Z.: Waves in pyroelectrics. J. Therm. Stress. 31(12), 1190–1211 (2008). doi:10.1080/01495730802508046

    Article  Google Scholar 

  74. Ye Z.G.: Handbook of Dielectric, Piezoelectric and Ferroelectric Materials Synthesis, Properties and Applications. Woodhead Publishing Limited, CRC Press, New York (2008)

    Book  Google Scholar 

  75. Yuan X., Zhu Z.H.: Reflection and refraction of plane waves at interface between two piezoelectric media. Acta Mech. 223, 2509–2521 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Giorgio.

Additional information

Communicated by Victor Eremeyev, Peter Schiavone and Francesco dell'Isola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd-alla, Aen., Giorgio, I., Galantucci, L. et al. Wave reflection at a free interface in an anisotropic pyroelectric medium with nonclassical thermoelasticity. Continuum Mech. Thermodyn. 28, 67–84 (2016). https://doi.org/10.1007/s00161-014-0400-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-014-0400-7

Keywords

Navigation