Skip to main content
Log in

Dynamic behaviors of mode III interfacial crack under a constant loading rate

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In an earlier study on intersonic crack propagation, Gao et al. (J. Mech. Phys. Solids 49: 2113–2132, 2001) described molecular dynamics simulations and continuum analysis of the dynamic behaviors of a mode II dominated crack moving along a weak plane under a constant loading rate. The crack was observed to initiate its motion at a critical time after the onset of loading, at which it is rapidly accelerated to the Rayleigh wave speed and propagates at this speed for a finite time interval until an intersonic daughter crack is nucleated at a peak stress at a finite distance ahead of the original crack tip. The present article aims to analyze this behavior for a mode III crack moving along a bi-material interface subject to a constant loading rate. We begin with a crack in an initially stress-free bi-material subject to a steadily increasing stress. The crack initiates its motion at a critical time governed by the Griffith criterion. After crack initiation, two scenarios of crack propagation are investigated: the first one is that the crack moves at a constant subsonic velocity; the second one is that the crack moves at the lower shear wave speed of the two materials. In the first scenario, the shear stress ahead of the crack tip is singular with exponent −1/2, as expected; in the second scenario, the stress singularity vanishes but a peak stress is found to emerge at a distance ahead of the moving crack tip. In the latter case, a daughter crack supersonic with respect to the softer medium can be expected to emerge ahead of the initial crack once the peak stress reaches the cohesive strength of the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham F.F.: Dynamics of brittle fracture with variable elasticity. Phys. Rev. Lett. 77, 272–275 (1996)

    Google Scholar 

  2. Abraham F.F., Brodbeck D., Rudge W.E., Xu X.: A molecular-dynamics investigation of rapid fracture mechanics. J. Mech. Phys. Solids 45, 1595–1619 (1997)

    Article  MATH  ADS  Google Scholar 

  3. Abraham F.F., Gao H.: How fast can cracks propagate?.  Phys. Rev. Lett. 84, 3113–3116 (2000)

    Article  ADS  Google Scholar 

  4. Abraham F.F., Walkup R., Gao H. et al.: Simulating materials failure by using up to one billion atoms and the world’s fastest computer: brittle fracture. Proc. Natl. Acad. Sci. USA 99, 5777–5782 (2002)

    Article  ADS  Google Scholar 

  5. Abraham F.F., Walkup R., Gao H. et al.: Simulating materials failure by using up to one billion atoms and the world’s fastest computer: work-hardening. Proc. Natl. Acad. Sci. USA 99, 5783–5787 (2002)

    Article  ADS  Google Scholar 

  6. Andrews D.J.: Rupture velocity of plane strain shear cracks. J. Geophys. Res. 81, 5679–5687 (1976)

    Article  ADS  Google Scholar 

  7. Broberg K.B.: The near-tip field at high crack velocities. Int. J. Fract. 39, 1–13 (1989)

    Article  Google Scholar 

  8. Broberg K.B.: Intersonic crack propagation in an orthotropic material. Int. J. Fract. 99, 1–11 (1999)

    Article  Google Scholar 

  9. Buehler, M.J.: Atomistic and continuum studies of deformation and failure in brittle solids and thin film systems. Ph. D. Dissertation, Max-Planck Institute for Metals Research (2004)

  10. Buehler M.J., Gao H.: A mother–daughter–granddaughter mechanism of shear dominated intersonic crack motion along interfaces of dissimilar materials. J. Chin. Inst. Eng. 27(6), 763–769 (2004)

    Google Scholar 

  11. Buehler M.J., Gao H.: Dynamical fracture instabilities due to local hyperelasticity at crack tips. Nature 439, 307–310 (2006)

    Article  ADS  Google Scholar 

  12. Buehler M.J., Abraham F.F., Gao H.: Hyperelasticity governs dynamic fracture at a critical length scale. Nature 426, 141–146 (2003)

    Article  ADS  Google Scholar 

  13. Burridge R.: Admissible speeds for plane strain shear cracks with friction but lacking cohesion. Geophys. J. R. Soc. Lond. 35, 439–455 (1973)

    MATH  ADS  Google Scholar 

  14. Chen B., Huang Y., Gao H., Wu P.: Shear crack propagation along weak planes in solids: a finite deformation analysis incorporating the linear harmonic potential. Int. J. Solids Struct. 41, 1–14 (2004)

    Article  Google Scholar 

  15. Chen B., Huang Y., Gao H., Yang W.: On the finite opening of intersonic shear crack. Int. J. Solids Struct. 41, 2293–2306 (2004)

    Article  MATH  Google Scholar 

  16. Coker D., Rosakis A.J.: Experimental observations of intersonic crack growth in asymmetrically loaded unidirectional composite plates. Philos. Mag. A 81, 571–595 (2001)

    Article  ADS  Google Scholar 

  17. Deng X.: Transient, asymptotic, elastodynamic analysis: a simple method and its application to mixed-mode crack growth. Int. J. Solids Struct. 30, 513–519 (1993)

    Article  MATH  Google Scholar 

  18. Fineberg J., Marder M.: Instability in dynamic fracture. Phys. Rep. Rev. Sect. Phys. Lett. 313, 2–108 (1999)

    MathSciNet  Google Scholar 

  19. Freund L.B.: The mechanics of dynamics shear crack propagation. J. Geophys. Res. 84, 2199–2209 (1979)

    Article  ADS  Google Scholar 

  20. Freund L.B.: Dynamic fracture mechanics. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  21. Gao H.: A theory of local limiting speed in dynamic fracture. J. Mech. Phys. Solids 44, 1453–1474 (1996)

    Article  ADS  Google Scholar 

  22. Gao H.: Elastic waves in a hyperelastic solid near its plane-strain equibiaxial cohesive limit. Philos. Mag. Lett. 76, 307–314 (1997)

    Article  ADS  Google Scholar 

  23. Gao H., Huang Y., Abraham F.F.: Continuum and atomistic studies of intersonic crack propagation. J. Mech. Phys. Solids 49, 2113–2132 (2001)

    Article  MATH  ADS  Google Scholar 

  24. Gao, H., Chen, S.H., Buehler, M.J.: Dynamic crack propagation in a heterogeneous material strip: study of the Broberg problem by continuum and atomistic methods. In: The 11th International Conference of Fracture (ICF11), Turin (Italy), March 20–25 (2005)

  25. Geubelle P.H., Kubair D.: Intersonic crack propagation in homogeneous media under shear dominated loading: numerical analysis. J. Mech. Phys. Solids 49, 571–587 (2001)

    Article  MATH  ADS  Google Scholar 

  26. Guo G.F., Yang W., Huang Y., Rosakis A.J.: Suddenly decelerating or accelerating intersonic shear cracks. J. Mech. Phys. Solids 51, 311–331 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Guo G.F., Yang W., Huang Y.: Intersonic crack growth under time dependent loading. Int. J. Solids Structure 40, 2757–2765 (2003)

    Article  MATH  Google Scholar 

  28. Guo G.F., Yang W., Huang Y.: Supersonic crack growth in a solid of upturn stress–strain relation under anti-plane shear. J. Mech. Phys. Solids 51, 1971–1985 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Guozden T.M., Guozden T.M.: Supersonic crack propagation in a class of lattice models of mode III brittle fracture. Phys. Rev. Lett. 95, 224302 (2005)

    Article  ADS  Google Scholar 

  30. Huang Y., Liu C., Rosakis A.J.: Transonic crack growth along a bimaterial interface: an investigation of the asymptotic structure of near-tip fields. Int. J. Solids Struct. 33, 2625–2645 (1996)

    Article  MATH  Google Scholar 

  31. Huang Y., Wang W., Liu C., Rosakis A.J.: Analysis of intersonic crack growth in unidirectional fiber-reinforced composites. J. Mech. Phys. Solids 47, 1893–1916 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. Huang Y., Gao H.: Intersonic crack propagation. Part I: the fundamental solution. J. Appl. Mech. 68, 169–175 (2001)

    Article  MATH  Google Scholar 

  33. Huang Y., Gao H.: Intersonic crack propagation. Part II: suddenly stopping crack. J. Appl. Mech. 69, 76–80 (2002)

    Article  MATH  Google Scholar 

  34. Ing Y., Ma C.: Transient analysis of a subsonic propagating interface crack subjected to antiplane dynamic loading in dissimilar isotropic materials. J. Appl. Mech. 64, 546–556 (1997)

    Article  MATH  Google Scholar 

  35. Ing Y., Ma C.: Dynamic analysis of a propagating antiplane interface crack. J. Eng. Mech. 123, 783–791 (1997)

    Article  Google Scholar 

  36. Koizumi H., Kirchner H.O.K., Suzuki T.: Lattice wave emission from moving cracks. Philos. Mag. 87, 4093–4107 (2007)

    Article  ADS  Google Scholar 

  37. Koizumi H., Kirchner H.O.K., Suzuki T.: Supersonic crack motion in a harmoni lattice. Philos. Mag. Lett. 87, 589–593 (2007)

    Article  ADS  Google Scholar 

  38. Kostrov B.V.: On the crack propagation with variable velocity. Int. J. Fract. 11, 47–56 (1975)

    Article  Google Scholar 

  39. Kubair D.V., Geubelle P.H., Huang Y.: Intersonic crack propagation in homogeneous media under shear-dominated loading: theoretical analysis. J. Mech. Phys. Solids 50, 1547–1564 (2002)

    Article  MATH  ADS  Google Scholar 

  40. Kubair D.V., Geubelle P.H., Huang Y.: Analysis of a rate-dependent cohesive model for dynamic crack propagation. Eng. Fract. Mech. 50, 685–704 (2003)

    Google Scholar 

  41. Kulamekhtova S.A., Saraikin V.A., Slepyan L.I.: Plane problem of a crack in a lattice. Mech. Solids 19, 101–108 (1984)

    MathSciNet  Google Scholar 

  42. Liu C., Lambros J., Rosakis A.J.: Highly transient elastodynamic crack growth in a bimaterial interface: hogher order asymptotic analysis and experiments. J. Mech. Phys. Solids 41, 1887–1954 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. Ma C.C., Ing Y.S.: Transient analysis of dynamic crack propagation with boundary effect. J. Appl. Mech. 62, 1029–1038 (1995)

    Article  MATH  Google Scholar 

  44. Marder M.: Shock-wave theory for rupture of rubber. Phys. Rev. Lett. 94, 048001 (2005)

    Article  ADS  Google Scholar 

  45. Marder M.: Supersonic rupture of rubber. J. Mech. Phys. Solids 54, 491–532 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. Mishuris G.S., Movchan A.B., Slepyan L.I.: Dynamical extraction of a single chain from a discrete lattice. J. Mech. Phys. Solids 56, 487–495 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. Needleman A.: An analysis of intersonic crack growth under shear loading. ASME J. Appl. Mech. 66, 847–857 (1999)

    Article  Google Scholar 

  48. Needleman A., Rosakis A.J.: The e.ect of bond strength and loading rate on the conditions governing the attainment of intersonic crack growth along interfaces. J. Mech. Phys. Solids 47, 2411–2449 (1999)

    Article  MATH  ADS  Google Scholar 

  49. Rosakis A.J.: Intersonic crack propagation in bimaterial systems. J. Mech. Phys. Solids 46, 1789–1813 (1998)

    Article  MATH  ADS  Google Scholar 

  50. Rosakis A.J., Samudrala O., Coker D.: Cracks faster than the shear wave speed. Science 284, 1337–1340 (1999)

    Article  ADS  Google Scholar 

  51. Rosakis A.J.: Intersonic shear cracks and fault ruptures. Adv. Phys. 51, 1189–1257 (2002)

    Article  ADS  Google Scholar 

  52. Samudrala O., Huang Y., Rosakis A.J.: Subsonic and intersonic mode II crack propagation with a rate dependent cohesive zone. J. Mech. Phys. Solids 50, 1231–1268 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  53. Samudrala, O., Huang, Y., Rosakis, A.J.: Subsonic and intersonic shear rupture of weak planes with a velocity weakening cohesive zone. J. Geophys. Res. Solid Earth 107(B8), (2002b). doi:10.1029/2001JB000460

  54. Simonov I.V.: Behavior of solutions of dynamic problems in the neighborhood of the edge of a cut moving at transonic speed in an elastic medium. Mech. Solids 18, 100–106 (1983)

    Google Scholar 

  55. Slepyan L.I.: Dynamics of brittle fracture in lattice. Doklady Sov. Phys. 26, 538–540 (1981)

    MATH  ADS  Google Scholar 

  56. Slepyan L.I.: Dynamic factor in impact, phase transition and fracture. J. Mech. Phys. Solids 48, 927–960 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  57. Slepyan L.I.: Feeding and dissipative waves in fracture and phase transition II. Phase-transition waves. J. Mech. Phys. Solids 49, 513–550 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  58. Slepyan L.I., Ayzenberg-Stepanenko M.V.: Some surprising phenomena in weak-bond fracture of a triangular lattice. J. Mech. Phys. Solids 50, 1591–1625 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  59. Slepyan L.I., Ayzenberg-Stepanenko M.V.: Localized transition waves in bistable-bond lattices. J. Mech. Phys. Solids 52, 1447–1479 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  60. Wang W., Huang Y., Rosakis A.J., Liu C.: Effect of elastic mismatch in intersonic crack propagation along a bimaterial interface. Eng. Fract. Mech. 61, 471–485 (1998)

    Article  Google Scholar 

  61. Yu H.H., Yang W.: Mechanics of transonic debonding of a bimaterial interface: the anti-plane shear case. J. Mech. Phys. Solids 42, 1789–1802 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  62. Yu H.H., Suo Z.: Intersonic crack growth on an interface. Proc. R. Soc. Lond. A 456, 23–246 (2000)

    Google Scholar 

  63. Zhu J.J., Kuang Z.B.: On interface crack propagation with variable velocity for logitudinal shear problem. Int. J. Fract. 72, 121–144 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaohua Chen.

Additional information

Communicated by Dr. Lev Truskinovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S., Gao, H. Dynamic behaviors of mode III interfacial crack under a constant loading rate. Continuum Mech. Thermodyn. 22, 515–530 (2010). https://doi.org/10.1007/s00161-010-0141-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-010-0141-1

Keywords

Navigation