Skip to main content
Log in

On the stored and dissipated energies in heterogeneous rate-independent systems: theory and simple examples

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The aim of the present work is to determine the amount of dissipated and stored energies in structures containing frictional cracks and elasto-plastic zones. The proposed theory combines micromechanical and thermodynamic tools to calculate both energies. Using simple examples, it is shown that the Taylor–Quinney coefficient is not a constant, and can be much less than the values usually considered (i.e. close to unity).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al’tshuler L.V.: Use of shock waves in high pressure physics. Soviet Phys. Uspekhi 8(1), 52–91 (1965)

    Article  MathSciNet  Google Scholar 

  2. El Wahabi M., Gavard L., Montheillet F., Cabrera J.M., Prado J.M.: Effect of initial grain size on dynamic recrystallization in high purity austenitic stainless steels. Acta Mater. 53, 4605–4612 (2005)

    Article  Google Scholar 

  3. Abeyaratne R., Knowles J.K.: Impact-induced phase transitions in thermoelastic solids. Phil. Trans. R. Soc. Lond. A 355, 843–867 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bowden F.P., Yoffe A.F.: Initiation and Growth of Explosion in Liquids and Solids. Cambridge University Press, Cambridge, UK (1952)

    Google Scholar 

  5. Chen H.C., Lasalvia J.C., Nesterenko V.F., Meyers M.A.: Shear localization and chemical reaction in high strain, high strain-rate deformation of Ti–Si mixture powders. Acta Mater. 46(9), 3033–3046 (1998)

    Article  Google Scholar 

  6. Marchand A., Duffy J.: An experimental study of the formation process of adiabatic shear bands in a structural steel. J. Mech. Phys. Solids 36(3), 251–283 (1988)

    Article  Google Scholar 

  7. Dinzart F., Molinari A.: Structure of adiabatic shear bands in thermo-viscoplastic materials. Eur. J. Mech. A/Solids 17, 923–938 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Wu L., Liu S., Wu Y., Wang C.: Precursors for rock fracturing and failure. Part I. IRR image abnormalities. Int. J. Rock Mech. Mining Sci. 43, 473–482 (2006)

    Article  Google Scholar 

  9. Bjornerud M., McLoughlin J.F.: Pressure-related feedback processes in the generation of pseudotachylytes. J. Struct. Geol. 26, 2317–2323 (2004)

    Article  Google Scholar 

  10. Taylor G.I., Quinney H.: The latent energy remaining in a metal after cold working. Proc. R. Soc. Lond. A 143, 307–326 (1934)

    Article  Google Scholar 

  11. Chrysochoos A., Maisonneuve O., Martin G., Caumon H., Chezeaux J.-C.: Plastic and dissipated work and stored energy. Nucl. Eng. Des. 114, 323–333 (1989)

    Article  Google Scholar 

  12. Mason J.J., Rosakis A.J., Ravichandran G.: On the strain and strain rate dependence of the fraction of plastic work converted to heat: an experimental study using high speed infrared detectors and the Kolsky bar. Mech. Mater. 17, 135–145 (1994)

    Article  Google Scholar 

  13. Kapoor R., Nemat-Nasser S.: Determination of temperature rise during high strain rate deformation. Mech. Mater. 27, 1–12 (1998)

    Article  Google Scholar 

  14. Oliferuk W., Maj M., Raniecki B.: Experimental analysis of energy storage rate components during tensile deformation of polycrystals. Mater. Sci. Eng. A 374, 77–81 (2004)

    Article  Google Scholar 

  15. Adams G.W., Farris R.J.: Latent energy of deformation of amorphous polymers. 1. Deformation calorimetry. Polymer 30, 1824–1828 (1989)

    Article  Google Scholar 

  16. Hasan O.A., Boyce M.C.: Energy storage during inelastic deformation of glassy polymers. Polymer 34, 5085–5092 (1993)

    Article  Google Scholar 

  17. Rittel D.: On the conversion of plastic work to heat during high strain rate deformation of glassy polymers. Mech. Mater. 31, 131–139 (1999)

    Article  Google Scholar 

  18. Chrysochoos A., Louche H.: An infrared image processing to analyse the calorific effects accompanying strain localisation. Int. J. Eng. Sci. 38, 1759–1788 (2000)

    Article  Google Scholar 

  19. Bonnet-Lebouvier A.-S., Molinari A., Lipinski P.: Analysis of the dynamic propagation of adiabatic shear bands. Int. J. Solids Struct. 39(16), 4249–4269 (2002)

    Article  MATH  Google Scholar 

  20. Ranc N., Wagner D.: Some aspects of Portevin-Le Chatelier plastic instabilities investigated by infrared pyrometry. Mater. Sci. Eng. A 394(1–2), 87–95 (2005)

    Google Scholar 

  21. Rittel D., Wang Z.G., Merzer M.: Adiabatic shear failure and dynamic stored energy of cold work. Phys. Rev. Lett. 96, 075502 (2006)

    Article  Google Scholar 

  22. Yang Y., Wang B.F.: Dynamic recrystallization in adiabatic shear band in titanium. Mater. Lett. 60(17–18), 2198–2202 (2006)

    Article  Google Scholar 

  23. Wei Y., Anand L.: On micro-cracking, inelastic dilatancy, and the brittle–ductile transition in compact rocks: a micromechanical study. Int. J. Solids Struct. 45, 2785–2798 (2008)

    Article  MATH  Google Scholar 

  24. Field J.E., Swallowe G.M., Heavens S.M.: Ignition mechanisms of explosives during mechanical deformation. Proc. R. Soc. Lond. A 382, 231–244 (1992)

    Google Scholar 

  25. Dienes J.K.: A unified theory of flow, hot spots, and fragmentation, with an application to explosive sensitivity. In: Davison, L., Grady, D.E., Shahinpoor, M. (eds) High Pressure Shock Compression of Solids II, pp. 366–398. Springer, Berlin (1996)

    Google Scholar 

  26. Bennett J.G., Haberman K.S., Johnson J.N., Asay B.W., Henson B.F.: A constitutive model for the non-shock ignition and mechanical response of high explosives. J. Mech. Phys. Solids 46(12), 2303–2322 (1998)

    Article  Google Scholar 

  27. Bever M.B., Holt D.L., Titchener A.L.: The stored energy of cold work. In: Chalmers, B., Christian, J.W., Massalski, T.B. (eds) Prog. Mat. Sci., vol. 17, Pergamon Press, NY, USA (1973)

    Google Scholar 

  28. Burr A., Hild F., Leckie F.A.: Micromechanics and continuum damage mechanics. Arch. Appl. Mech. 65, 437–456 (1995)

    MATH  Google Scholar 

  29. Boudon-Cussac D., Hild F., Pijaudier-Cabot G.: Tensile damage in concrete: analysis of an experimental technique. J. Eng. Mech. ASCE 125(8), 906–913 (1999)

    Article  Google Scholar 

  30. Aravas N., Kim K.-S., Leckie F.A.: On the calculations of the stored energy of cold work. ASME J. Eng. Mater. Technol. 112, 465–470 (1990)

    Article  Google Scholar 

  31. Halm D., Dragon A.: An anisotropic model of damage and frictional sliding for brittle materials. Eur. J. Mech. A/Solids 17(3), 439–460 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  32. Pensée V., Kondo D., Dormieux L.: Micromechanical analysis of anisotropic damage in brittle materials. J. Eng. Mech. 128(8), 889–897 (2002)

    Article  Google Scholar 

  33. Andrieux S., Bamberger Y., Marigo J.-J.: Un modèle de matériau microfissuré pour les bétons et les roches. J. Méc. Théor. Appl. 5, 471–513 (1986)

    MATH  Google Scholar 

  34. Hill R.: The essential structure of constitutive laws for metal composites and polycrystals. J. Mech. Phys. Solids 15, 79–95 (1967)

    Article  Google Scholar 

  35. Mandel J.: Contribution théorique à l’étude de l’écrouissage et des lois de l’écoulement plastique. In: Becker, E. (ed.) Proc. 11th Int. Cong. Appl. Mech., pp. 502–509. Springer, Berlin, RFA (1964)

    Google Scholar 

  36. Volterra V.: Sur l’équilibre des corps élastiques multiplement connexes. Annales Scientifiques de l’Ecole Normale Supérieure, Paris (France) 24, 401–518 (1907)

    MathSciNet  Google Scholar 

  37. Love A.E.H.: The Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1927)

    MATH  Google Scholar 

  38. Vivier, G., Hild, F., Labrunie, M., Lambert, P., Trumel, H.: Studying and modelling a pressed HMX-based energetic material. In: 17th DYMAT Tech. Meeting, September 6–7. Cambridge, UK (2007)

  39. Coleman B.D., Gurtin M.E.: Thermodynamics with internal state variables. J. Chem. Phys. 47(2), 597–613 (1967)

    Article  Google Scholar 

  40. Germain P., Nguyen Q.S., Suquet P.: Continuum thermodynamics. ASME J. Appl. Mech. 50, 1010–1020 (1983)

    Article  MATH  Google Scholar 

  41. Lemaitre J., Chaboche J.-L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Trumel.

Additional information

Communicated by W.H. Müller

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vivier, G., Trumel, H. & Hild, F. On the stored and dissipated energies in heterogeneous rate-independent systems: theory and simple examples. Continuum Mech. Thermodyn. 20, 411–427 (2009). https://doi.org/10.1007/s00161-008-0089-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-008-0089-6

Keywords

PACS

Navigation