Skip to main content
Log in

Morphology, dynamics and plasma parameters of plumes and inter-plume regions in solar coronal holes

  • Review Article
  • Published:
The Astronomy and Astrophysics Review Aims and scope

Abstract

Coronal plumes, which extend from solar coronal holes (CH) into the high corona and—possibly—into the solar wind (SW), can now continuously be studied with modern telescopes and spectrometers on spacecraft, in addition to investigations from the ground, in particular, during total eclipses. Despite the large amount of data available on these prominent features and related phenomena, many questions remained unanswered as to their generation and relative contributions to the high-speed streams emanating from CHs. An understanding of the processes of plume formation and evolution requires a better knowledge of the physical conditions at the base of CHs, in plumes and in the surrounding inter-plume regions. More specifically, information is needed on the magnetic field configuration, the electron densities and temperatures, effective ion temperatures, non-thermal motions, plume cross sections relative to the size of a CH, the plasma bulk speeds, as well as any plume signatures in the SW. In spring 2007, the authors proposed a study on ‘Structure and dynamics of coronal plumes and inter-plume regions in solar coronal holes’ to the International Space Science Institute (ISSI) in Bern to clarify some of these aspects by considering relevant observations and the extensive literature. This review summarizes the results and conclusions of the study. Stereoscopic observations allowed us to include three-dimensional reconstructions of plumes. Multi-instrument investigations carried out during several campaigns led to progress in some areas, such as plasma densities, temperatures, plume structure and the relation to other solar phenomena, but not all questions could be answered concerning the details of plume generation process(es) and interaction with the SW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAS:

American Astronomical Society

APL:

Active region plume

AOGS:

Asia Oceania Geoscience

AR:

Active region

BP:

Bright point

CDS:

Coronal diagnostic spectrometer

CH:

Coronal hole

CHIANTI:

Atomic Database for Spectroscopic Diagnostics of Astrophysical Plasmas

DEM:

Differential emission measure

EKPol:

Liquid crystal polarimeter

EM:

Emission measure

ECH:

Equatorial coronal hole

EIS:

EUV imaging spectrometer

EIT:

EUV imaging telescope

EUV:

Extreme UV (10 nm to 120 nm)

EUVI:

Extreme UV Imager

FIP:

First-ionization potential

FIT:

First-ionization time

FOV:

Field of view

GI:

Grazing-incidence

IPR:

Inter-plume region

ISSI:

International Space Science Institute

LASCO:

Large angle and spectrometer coronagraph

LOS:

Line of sight

MDI:

Michelson Doppler imager

MHD:

Magnetohydrodynamic

MLSO:

Mauna Loa solar observatory

NI:

Normal-incidence

PL:

Coronal plume (in tables and diagrams)

PCH:

Polar coronal hole

PBS:

Pressure-balanced structure

PS:

Pseudostreamer

QS:

Quiet sun

Secchi:

Sun earth connection coronal and heliospheric investigation

SOHO:

Solar and heliospheric observatory

SW:

Solar wind

SWOOPS:

Solar wind observations over the poles of the sun

SWICS:

Solar wind ionization state and composition spectrometer

SUMER:

Solar UV measurements of emitted radiation spectrometer

SP:

Spectro-polarimeter

SOLIS:

Synoptic optical long-term investigations of the sun

SOT:

Solar optical telescope

STEREO:

Solar terrestrial relations observatory

TID:

Time-intensity diagram

TR:

Transition region

TRACE:

Transition region and coronal explorer

UV:

Ultraviolet (10 nm to 380 nm)

UVCS:

UV coronagraph spectrometer

UCS:

UV coronal spectrometer

VUV:

Vacuum UV (10 nm to 200 nm)

VHM/FGM:

Vector helium and fluxgate magnetometers

VSM:

Vector spectro-magnetograph

WL:

White light (380 nm to 760 nm)

WLC:

WL coronagraph

XRT:

X-ray telescope

3D (2.5D, 2D):

Three (two and a half, two)-dimensional

References

  • Abbo L, Zangrilli L, Antonucci E, Fineschi S, Kohl J, Giordano S, Massone G, Capobianco G, Calcidese P, Porcu F (2008) Investigation of the solar wind outflows and joint observations during the total solar eclipse of March 29, 2006. 37th COSPAR Scientific Assembly. Montréal, 13–20 July 2008, Paper: D24-0038-08

  • Ahmad IA, Withbroe GL (1977) EUV analysis of polar plumes. Solar Phys 53: 397–408

    Article  ADS  Google Scholar 

  • Antonucci E, Noci G, Kohl JL, Tondello G, Huber MCE, Giordano S, Benna C, Ciaravella A, Fineschi S, Gardner LD, Martin R, Michels J, Naletto G, Nicolosi P, Panasyuk A, Raymond CJ, Romoli M, Spadaro D, Strachan L, van Ballegooijen A (1997) First results from UVCS: dynamics of the extended corona. ASP Conf Ser 118: 273–277

    ADS  Google Scholar 

  • Antonucci E, Dodero MA, Giordano S (2000) Fast solar wind velocity in a polar coronal hole during solar minimum. Solar Phys 197: 115–134

    Article  ADS  Google Scholar 

  • Antonucci E, Dodero MA, Giordano S, Krishnakumar V, Noci G (2004) Spectroscopic measurement of the plasma electron density and outflow velocity in a polar coronal hole. A & A 416: 749–758

    ADS  Google Scholar 

  • Axford WI, McKenzie JF (1992) The origin of high speed solar wind streams. In: Marsch E, Schwenn R (eds) Solar Wind Seven. Pergamon Press, Oxford, New York, Seoul, Tokyo, pp 1–5

    Google Scholar 

  • Axford WI, McKenzie JF (1996) Implications of observations of the solar wind and corona for solar wind models. Astrophys Space Sci 243: 1–3

    Article  ADS  Google Scholar 

  • Balogh A, Beek TJ, Forsyth RJ, Hedgecock PC, Marquedant RJ, Smith EJ, Southwood DJ, Tsurutani BT (1992) The magnetic field investigation on the Ulysses mission—instrumentation and preliminary scientific results. A & ASS 92: 221–236

    ADS  Google Scholar 

  • Bame SJ, Asbridge JR, Feldman WC, Gosling JT (1977) Evidence for a structure-free state at high solar wind speeds. J Geophys Res 82: 1487–1492

    Article  ADS  Google Scholar 

  • Bame SJ, McComas DJ, Barraclough BL, Phillips JL, Sofaly KJ, Chavez JC, Goldstein BE, Sakurai RK (1992) The Ulysses solar wind plasma experiment. A & ASS 92: 237–265

    ADS  Google Scholar 

  • Banaszkiewicz M, Axford WI, McKenzie JF (1998) An analytic solar magnetic field model. A & A 337: 940–944

    ADS  Google Scholar 

  • Banerjee D, Teriaca L, Doyle JG, Wilhelm K (1998) Broadening of Si viii lines observed in the solar polar coronal holes. A & A 339: 208–214

    ADS  Google Scholar 

  • Banerjee D, Teriaca L, Doyle JG, Lemaire P (2000) Polar plumes and inter-plume regions as observed by SUMER on SOHO. Solar Phys 194: 43–58

    Article  ADS  Google Scholar 

  • Banerjee D, O’Shea E, Doyle JG (2000) Long-period oscillations in polar plumes as observed by CDS on SOHO. Solar Phys 196: 63–78

    Article  ADS  Google Scholar 

  • Banerjee D, Pérez-Suárez D, Doyle JG (2009) Signatures of Alfvén waves in the polar coronal holes as seen by EIS/Hinode. A & A 501: L15–L18

    ADS  Google Scholar 

  • Banerjee D, Teriaca L, Gupta GR, Imada S, Stenborg G, Solanki SK (2009) Propagating waves in polar coronal holes as seen by SUMER & EIS. A & A 499: L29–L32

    ADS  Google Scholar 

  • Barbey N, Auchère F, Rodet T, Vial J-C (2008) A time-evolving 3D method dedicated to the reconstruction of solar plumes and results using extreme ultraviolet data. Solar Phys 248: 409–423

    Article  ADS  Google Scholar 

  • Beckers JM (1963) Study of the undisturbed chromosphere from H α disk filtergrams, with particular reference to the identification of spicules. ApJ 138: 648–663

    Article  ADS  Google Scholar 

  • Bemporad A, Matthaeus WH, Poletto G (2008) Low-frequency Ly α power spectra observed by UVCS in a polar coronal hole. ApJ 677: L137–L140

    Article  ADS  Google Scholar 

  • Bohlin JD (1977) Extreme-ultraviolet observations of coronal holes. I – Locations, sizes and evolution of coronal holes, June 1973–January 1974. Solar Phys 51: 377–398

    Article  ADS  Google Scholar 

  • Bohlin JD, Sheeley NR Jr (1978) Extreme ultraviolet observations of coronal holes. II – Association of holes with solar magnetic fields and a model for their formation during the solar cycle. Solar Phys 56: 125–151

    Article  ADS  Google Scholar 

  • Boursier Y, Llebaria A (2005) Etude, modelisation et simulation des plumes polaires. Rapport de DEA, Université de Provence

  • Boursier Y, Llebaria A (2008) 3D dynamic forward modeling of polar plumes using hidden Markov trees. St Met 5: 328–339

    Article  MathSciNet  Google Scholar 

  • Brekke P, Hassler DM, Wilhelm K (1997) Doppler shifts in the quiet-Sun transition region and corona observed with SUMER on SOHO. Solar Phys 175: 349–374

    Article  ADS  Google Scholar 

  • Budnik F, Schröder K-P, Wilhelm K, Glassmeier K-H (1998) Observational evidence for coronal mass injection by “evaporation” of spicular plasma. A & A 334: L77–L80

    ADS  Google Scholar 

  • Casalbuoni S, Del Zanna L, Habbal SR, Velli M (1999) Coronal plumes and the expansion of pressure-balanced structures in the fast solar wind. J Geophys Res 104: 9947–9961

    Article  ADS  Google Scholar 

  • Chae J, Yun HS, Poland AI (1998) Temperature dependence of ultraviolet line average Doppler shifts in the quiet Sun. ApJSS 114: 151–164

    Article  ADS  Google Scholar 

  • Corti G, Poletto G, Romoli M, Michels J, Kohl J, Noci G (1997) Physical parameters in plume and interplume regions from UVCS observations. ESA SP-404: 289–294

    ADS  Google Scholar 

  • Cranmer SR (2009) Coronal Holes. LRSP 6: 3–63

    ADS  Google Scholar 

  • Cranmer SR, Kohl JL, Noci G, Antonucci E, Tondello G, Huber MCE, Strachan L, Panasyuk AV, Gardner LD, Romoli M, Fineschi S, Dobrzycka D, Raymond JC, Nicolosi P, Siegmund OHW, Spadaro D, Benna C, Ciaravella A, Giordano S, Habbal SR, Karovska M, Li X, Martin R, Michels JC, Modigliani A, Naletto G, O’Neal RH, Pernechele C, Poletto G, Smith PL, Suleiman RM (1999) An empirical model of a polar coronal hole at solar minimum. ApJ 511: 481–501

    Article  ADS  Google Scholar 

  • Cranmer SR, van Ballegooijen AA, Edgar RJ (2007) Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence. ApJSS 171: 520–551

    Article  ADS  Google Scholar 

  • Crooker NU, Gosling JT, Kahler SW (2002) Reducing heliospheric magnetic flux from coronal mass ejections without disconnection. J Geophys Res 107: SSH3-1–SSH3-5. doi:10.1029/2001JA000236

    Article  Google Scholar 

  • Culhane JL, Harra LK, James AM, Al-Janabi K, Bradley LJ, Chaudry RA, Rees K, Tandy JA, Thomas P, Whillock MCR, Winter B, Doschek GA, Korendyke CM, Brown CM, Myers S, Mariska J, Seely J, Lang J, Kent BJ, Shaughnessy BM, Young PR, Simnett GM, Castelli CM, Mahmoud S, Mapson-Menard H, Probyn BJ, Thomas RJ, Davila J, Dere K, Windt D, Shea J, Hagood R, Moye R, Hara H, Watanabe T, Matsuzaki K, Kosugi T, Hansteen V, Wikstøl Ø (2007) The EUV imaging spectrometer for Hinode. Solar Phys 243: 19–61

    Article  ADS  Google Scholar 

  • Cuntz M, Suess ST (2001) Shock formation of slow magnetosonic waves in coronal plumes. ApJ 549: L143–L146

    Article  ADS  Google Scholar 

  • Curdt W, Wilhelm K, Feng L, Kamio S (2008) Multi-spacecraft observations of polar coronal plumes. A & A 481: L61–L64

    ADS  Google Scholar 

  • David C, Gabriel AH, Bely-Dubau F, Fludra A, Lemaire P, Wilhelm K (1998) Measurement of the electron temperature gradient in a solar coronal hole. A & A 336: L90–L94

    ADS  Google Scholar 

  • DeForest CE (2007) On the size of structures in the solar corona. ApJ 661: 532–542

    Article  ADS  Google Scholar 

  • DeForest CE, Gurman JB (1998) Observation of quasi-periodic compressive waves in solar polar plumes. ApJ 501: L217–L220

    Article  ADS  Google Scholar 

  • DeForest CE, Hoeksema JT, Gurman JB, Thompson BJ, Plunkett SP, Howard R, Harrison RC, Hassler DM (1997) Polar plume anatomy: results of a coordinated observation. Solar Phys 175: 393–410

    Article  ADS  Google Scholar 

  • DeForest CE, Plunkett SP, Andrews MD (2001) Observation of polar plumes at high solar altitudes. ApJ 546: 569–575

    Article  ADS  Google Scholar 

  • DeForest CE, Lamy PL, Llebaria A (2001) Solar polar plume lifetime and coronal hole expansion: determination from long-term observations. ApJ 560: 490–498

    Article  ADS  Google Scholar 

  • Del Zanna G, Bromage BJI (1999) The elepfant’s trunk: spectroscopic diagnostics applied to SOHO/CDS observations of the August 1996 equatorial coronal hole. J Geophys Res 104: 9753–9766

    Article  ADS  Google Scholar 

  • Del Zanna G, Bromage BJI, Mason HE (2003) Spectroscopic characteristics of polar plumes. A & A 398: 743–761

    ADS  Google Scholar 

  • Del Zanna G, Rozum I, Badnell NR (2008) Electron-impact excitation of Be-like Mg. A & A 487: 1203–1208

    ADS  Google Scholar 

  • Del Zanna L, Hood AW, Longbottom AW (1997) An MHD model for solar coronal plumes. A & A 318: 963–969

    ADS  Google Scholar 

  • De Pontieu B, McIntosh SW, Hansteen VH, Schrijver CJ (2009) Observing the roots of solar coronal heating in the chromosphere. ApJ 701: L1–L6

    Article  ADS  Google Scholar 

  • Dere KP, Bartoe J-DF, Brueckner GE, Recely F (1989) Explosive events and magnetic reconnection in the solar atmosphere. ApJ 345: L95–L97

    Article  ADS  Google Scholar 

  • Dere KP, Bartoe J-DF, Brueckner GE, Ewing J, Lund P (1991) Explosive events and magnetic reconnection in the solar atmosphere. J Geophys Res 96: 9399–9407

    Article  ADS  Google Scholar 

  • Dmitruk P, Matthaeus WH (2009) Waves and turbulence in magnetohydrodynamic direct numerical simulations. Phys Plasmas 16: 062304-1–062304-9

    Article  ADS  Google Scholar 

  • Dmitruk P, Matthaeus WH, Milano LJ, Oughton S (2001) Conditions for sustainment of magnetohydrodynamic turbulence driven by Alfvén waves. Phys Plasmas 8: 2377–2384

    Article  ADS  Google Scholar 

  • Dmitruk P, Matthaeus WH, Milano LJ, Oughton S, Zank GP, Mullan DJ (2002) Coronal heating distribution due to low frequency wave driven turbulence. ApJ 575: 571–577

    Article  ADS  Google Scholar 

  • Dobrzycka D, Cranmer SR, Raymond JC, Biesecker DA, Gurman JB (2002) Polar coronal jets at solar minimum. ApJ 565: 621–629

    Article  ADS  Google Scholar 

  • Dolla L, Solomon J (2008) Solar off-limb line widths: Alfvén waves, ion-cyclotron waves, and preferential heating. A & A 483: 271–283

    ADS  Google Scholar 

  • Domingo V, Fleck B, Poland AI (1995) The SOHO Mission: an overview. Solar Phys 162: 1–37

    Article  ADS  Google Scholar 

  • Doschek GA, Feldman U, Bohlin JD (1976) Doppler wavelength shifts of transition zone lines measured in SKYLAB solar spectra. ApJ 205: L177–L180

    Article  ADS  Google Scholar 

  • Doschek GA, Warren HP, Laming JM, Mariska JT, Wilhelm K, Lemaire P, Schühle U, Moran TG (1997) Electron densities in the solar polar coronal holes from density-sensitive line ratios of Si viii and S x. ApJ 482: L109–L112

    Article  ADS  Google Scholar 

  • Doschek GA, Laming JM, Feldman U, Wilhelm K, Lemaire P, Schühle U, Hassler DM (1998) The Si/Ne abundance ratio in polar coronal hole and quiet-Sun coronal regions. ApJ 504: 573–587

    Article  ADS  Google Scholar 

  • Doschek GA, Feldman U, Laming JM, Schühle U, Wilhelm K (2001) Properties of solar polar coronal hole plasmas observed above the limb. ApJ 546: 559–568

    Article  ADS  Google Scholar 

  • Dowdy JF, Rabin D, Moore RL (1986) On the magnetic structure of the quiet transition region. Solar Phys 105: 35–45

    Article  ADS  Google Scholar 

  • Doyle JG, Teriaca L, Banerjee D (1999) Coronal hole diagnostics out to 8 R . A & A 349: 956–960

    ADS  Google Scholar 

  • Doyle JG, Madjarska MS, Dzifčáková E, Dammasch IE (2004) Coronal response of bi-directional jets. Solar Phys 221: 51–64

    Article  ADS  Google Scholar 

  • Dwivedi BN, Mohan A, Wilhelm K (2000) On the electron temperatures, densities and hot ions in coronal hole plasma observed by SUMER on SOHO. Adv Space Res 25: 1751–1756

    Article  ADS  Google Scholar 

  • Esser R, Fineschi S, Dobrzycka D, Habbal SR, Edgar RJ, Raymond JC, Kohl JL, Guhathakurta M (1999) Plasma properties in coronal holes derived from measurements of minor ion spectral lines and polarized white light intensity. ApJ 510: L63–L67

    Article  ADS  Google Scholar 

  • Feldman U, Schühle U, Widing KG, Laming JM (1998) Coronal composition above the solar equator and the north pole as determined from spectra acquired by the SUMER instrument on SOHO. ApJ 505: 999–1006

    Article  ADS  Google Scholar 

  • Feldman U, Dammasch IE, Wilhelm K (2001) On the unresolved fine structures of the solar upper atmosphere. IV. The interface with the chromosphere. ApJ 558: 423–427

    Article  ADS  Google Scholar 

  • Feldman U, Dammasch IE, Wilhelm K, Lemaire P, Hassler DM (2003) Images of the solar upper atmosphere from SUMER on SOHO. ESA SP-1274:1–30 (A1–A208)

    Google Scholar 

  • Feng L, Inhester B, Solanki SK, Wilhelm K, Wiegelmann T, Podlipnik B, Howard RA, Plunkett SP, Wuelser JP, Gan WQ (2009) Stereoscopic polar plume reconstructions from STEREO/SECCHI images. ApJ 700: 292–301

    Article  ADS  Google Scholar 

  • Fisher R, Guhathakurta M (1995) Physical properties of polar coronal rays and holes as observed with the Spartan 201-01 coronagraph. ApJ 447: L139–L142

    Article  ADS  Google Scholar 

  • Flower DR, Nussbaumer H (1975) On the extreme ultraviolet solar emission of B-like ions: O iv. A & A 45: 145–150

    ADS  Google Scholar 

  • Fludra A, Del Zanna G, Alexander D, Bromage BJI (1999) Electron density and temperature of the lower solar corona. J Geophys Res 104: 9709–9720

    Article  ADS  Google Scholar 

  • Frazin RA (2000) Tomography of the solar corona. ApJ 530: 1026–1035

    Article  ADS  Google Scholar 

  • Gabriel AH (1976) A magnetic model of the solar transition region. Philos Trans R Soc Lond A 281: 339–352

    Article  ADS  Google Scholar 

  • Gabriel AH, Jordan C (1973) The temperature dependence of line ratios of helium-like ions. ApJ 186: 327–334

    Article  ADS  Google Scholar 

  • Gabriel AH, Patchett BE, Lang J, Culhane JL, Norman K (1986) Early results from the CHASE experiment flown on Spacelab 2. Brit Interplanet Soc J 39: 207–210

    ADS  Google Scholar 

  • Gabriel AH, Bely-Dubau F, Lemaire P (2003) The contribution of polar plumes to the fast solar wind. ApJ 589: 623–634

    Article  ADS  Google Scholar 

  • Gabriel AH, Abbo L, Bely-Dubau F, Llebaria A, Antonucci E (2005) Solar wind outflow in polar plumes from 1.05 to 2.4 R S. ApJ 635: L185–L188

    Article  ADS  Google Scholar 

  • Gabriel A, Bely-Dubau F, Tison E, Wilhelm K (2009) The structure and origin of solar plumes: network plumes. ApJ 700: 551–558

    Article  ADS  Google Scholar 

  • Geiss J, Gloeckler G, von Steiger R (1995) Origin of the solar wind from composition data. Space Sci Rev 72: 49–60

    Article  ADS  Google Scholar 

  • Giordano S, Antonucci E, Benna C, Romoli M, Noci G, Kohl JL, Fineschi S, Michels J, Naletto G (1997) Plume and inter-plume regions and solar wind acceleration in polar coronal holes between 1.5 and 3.5 R . ESA SP-404: 413–416

    ADS  Google Scholar 

  • Giordano S, Antonucci E, Dodero MA (2000a) Oxygen outflow velocities in a polar coronal hole. Adv Space Res 25: 1927–1930

    Article  ADS  Google Scholar 

  • Giordano S, Antonucci E, Noci G, Romoli M, Kohl JL (2000b) Identification of the coronal sources of the fast solar wind. ApJ 531: L79–L82

    Article  ADS  Google Scholar 

  • Gloeckler G, Geiss J, Balsiger H, Bedini P, Cain JC, Fisher J, Fisk LA, Galvin AB, Gliem F, Hamilton DC (1992) The solar wind ion composition spectrometer. A & ASS 92: 267–289

    ADS  Google Scholar 

  • Goldstein BE, Neugebauer M, Phillips JL, Bame S, Gosling JT, McComas D, Wang Y-M, Sheeley NR, Suess ST (1996) Ulysses plasma parameters: latitudinal, radial, and temporal variations. A & A 316: 296–303

    ADS  Google Scholar 

  • Golub L, Deluca E, Austin G, Bookbinder J, Caldwell D, Cheimets P, Cirtain J, Cosmo M, Reid P, Sette A, Weber M, Sakao T, Kano R, Shibasaki K, Hara H, Tsuneta S, Kumagai K, Tamura T, Shimojo M, McCracken J, Carpenter J, Haight H, Siler R, Wright E, Tucker J, Rutledge H, Barbera M, Peres G, Varisco S (2007) The X-ray telescope (XRT) for the Hinode mission. Solar Phys 243: 63–86

    Article  ADS  Google Scholar 

  • Grevesse N, Sauval AJ (1998) Standard solar composition. Space Sci Rev 85: 161–174

    Article  ADS  Google Scholar 

  • Guhathakurta M, Fisher R (1995) Coronal streamers and fine scale structures of the low latitude corona as detected with Spartan 201-01 white light coronagraph. Geophys Res Lett 22: 1841–1844

    Article  ADS  Google Scholar 

  • Gupta GR, O’Shea E, Banerjee D, Popescu M, Doyle JG (2009) On the statistical detection of propagating waves in polar coronal holes. A & A 493: 251–257

    ADS  Google Scholar 

  • Gupta GR, Banerjee D, Teriaca L, Imada S, Solanki S (2010) Accelerating waves in polar coronal holes as seen by EIS and SUMER. ApJ, 718:11–22

  • Habbal SR, Esser R, Arndt MB (1993) How reliable are coronal hole temperatures deduced from observations?. ApJ 413: 435–444

    Article  ADS  Google Scholar 

  • Habbal SR, Esser R, Guhathakurta M, Fisher RR (1995) Flow properties of the solar wind derived from a two-fluid model with constraints from white light and in situ interplanetary observations. Geophys Res Lett 22: 1465–1468

    Article  ADS  Google Scholar 

  • Handy BN, Acton LW, Kankelborg CC, Wolfson CJ, Akin DJ, Bruner ME, Caravalho R, Catura RC, Chevalier R, Duncan DW, Edwards CG, Feinstein CN, Freeland SL, Friedlaender FM, Hoffmann CH, Hurlburt NE, Jurcevich BK, Katz NL, Kelly GA, Lemen JR, Levay M, Lindgren RW, Mathur DP, Meyer SB, Morrison SJ, Morrison MD, Nightingale RW, Pope TP, Rehse RA, Schrijver CJ, Shine RA, Shing L, Strong KT, Tarbell TD, Title AM, Torgerson DD, Golub L, Bookbinder JA, Caldwell D, Cheimets PN, Davis WN, Deluca EE, McMullen RA, Warren HP, Amato D, Fisher R, Maldonado H, Parkinson C (1999) The transition region and coronal explorer. Solar Phys 187: 229–260

    Article  ADS  Google Scholar 

  • Hara H, Watanabe T, Harra LK, Culhane JL, Young PR, Mariska JT, Doschek GA (2008) Coronal plasma motions near footpoints of active region loops revealed from spectroscopic observations with Hinode EIS. ApJ 678: L67–L71

    Article  ADS  Google Scholar 

  • Hardee PE, Clarke DA (1995) Destabilization of strongly magnetized jets. ApJ 449: 119–133

    Article  ADS  Google Scholar 

  • Hassler DM, Rottman GJ, Shoub EC, Holzer TE (1990) Line broadening of Mg x 609 and 625 Å coronal emission lines observed above the solar limb. ApJ 348: L77–L80

    Article  ADS  Google Scholar 

  • Hassler DM, Wilhelm K, Lemaire P, Schühle U (1997) Observations of polar plumes with the SUMER instrument on SOHO. Solar Phys 175: 375–391

    Article  ADS  Google Scholar 

  • Hassler DM, Dammasch IE, Lemaire P, Brekke P, Curdt W, Mason HE, Vial J-C, Wilhelm K (1999) Solar wind outflow and the chromospheric magnetic network. Science 283: 810–813

    Article  ADS  Google Scholar 

  • Hiei E, Takahashi N, The Eclipse Group of Meisei University (2000) Ground-based and SOHO observations of polar plumes during eclipse. Adv Space Res 25:1887–1891

    Google Scholar 

  • Howard RA, Moses JD, Vourlidas A, Newmark JS, Socker DG, Plunkett SP, Korendyke CM, Cook JW, Hurley A, Davila JM, Thompson WT, St Cyr OC, Mentzell E, Mehalick K, Lemen JR, Wuelser JP, Duncan DW, Tarbell TD, Wolfson CJ, Moore A, Harrison RA, Waltham NR, Lang J, Davis CJ, Eyles CJ, Mapson-Menard H, Simnett GM, Halain JP, Defise JM, Mazy E, Rochus P, Mercier R, Ravet MF, Delmotte F, Auchère F, Delaboudinière JP, Bothmer V, Deutsch W, Wang D, Rich N, Cooper S, Stephens V, Maahs G, Baugh R, McMullin D, Carter T (2008) Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci Rev 136: 67–115

    Article  ADS  Google Scholar 

  • Huber MCE, Foukal PV, Noyes RW, Reeves EM, Schmahl EJ, Timothy JG, Vernazza JE, Withbroe GL (1974) Extreme-ultraviolet observations of coronal holes—initial results from SKYLAB. ApJ 194: L115–L118

    Article  ADS  Google Scholar 

  • Imada S, Hara H, Watanabe T (2009) Ion temperature and non-thermal velocity in a solar active region: Using emission lines of different atomic species. ApJ 705: L208–L212

    Article  ADS  Google Scholar 

  • Innes DE, Inhester B, Axford WI, Wilhelm K (1997) Bi-directional plasma jets produced by magnetic reconnection on the Sun. Nature 386: 811–813

    Article  ADS  Google Scholar 

  • Ito H, Tsuneta S, Shiota D, Tokumaru M, Fujiki K (2010) Is the polar region different from the quiet region of the Sun? ApJ 719:131–142

    Google Scholar 

  • Jess DB, Mathioudakis M, Erdélyi R, Crockett PJ, Keenan FP, Christian DJ (2009) Alfvén waves in the lower solar atmosphere. Science 323: 1582–1585

    Article  ADS  Google Scholar 

  • Judge PG, Hansteen V, Wikstøl Ø, Wilhelm K, Schühle U, Moran T (1998) Evidence in support of the “nanoflare” picture of coronal heating from SUMER data. ApJ 502: 981–996

    Article  ADS  Google Scholar 

  • Kamio S, Curdt W, Teriaca L, Inhester B, Solanki SK (2010) Observations of a rotating macrospicule associated with an X-ray jet. A & A 510: L1–L4

    ADS  Google Scholar 

  • Keenan FP, Kingston AE, Dufton PL, Doyle JG, Widing KG (1984) Mg ix and Si xi line ratios in the Sun. Solar Phys 94: 91–98

    Article  ADS  Google Scholar 

  • Keller CU, Harvey JW, the SOLIS Team (2003) The SOLIS vector-spectro-magnetograph. ASP Conf Ser 307:13–22

  • Ko Y-K, Fisk LA, Geiss J, Gloeckler G, Guhathakurta M (1997) An empirical study of the electron temperature and heavy ion velocities in the south polar coronal hole. Solar Phys 171: 345–361

    Article  ADS  Google Scholar 

  • Kohl JL, Withbroe GL (1982) EUV spectroscopic plasma diagnostics for the solar wind acceleration region. ApJ 256: 263–270

    Article  ADS  Google Scholar 

  • Kohl JL, Gardner LD, Strachan L, Fisher R, Guhathakurta M (1995) Spartan 201 coronal spectroscopy during the polar passes of Ulysses. Space Sci Rev 72: 29–38

    Article  ADS  Google Scholar 

  • Kohl JL, Noci G, Antonucci E, Tondello G, Huber MCE, Gardner LD, Nicolosi P, Strachan L, Fineschi S, Raymond JC, Romoli M, Spadaro D, Panasyuk A, Siegmund OHW, Benna C, Ciaravella A, Cranmer SR, Giordano S, Karovska M, Martin R, Michels J, Modigliani A, Naletto G, Pernechele C, Poletto G, Smith PL (1997) First results from the SOHO ultraviolet coronagraph spectrometer. Solar Phys 175: 613–644

    Article  ADS  Google Scholar 

  • Kohl JL, Esser R, Cranmer SR, Fineschi S, Gardner LD, Panasyuk AV, Strachan L, Suleiman RM, Frazin RA, Noci G (1999) EUV spectral line profiles in polar coronal holes from 1.3 to 3.0 R . ApJ 510: L59–L62

    Article  ADS  Google Scholar 

  • Kohl JL, Noci G, Cranmer SR, Raymond JC (2006) Ultraviolet spectroscopy of the extended solar corona. A & ARev 13: 31–157

    ADS  Google Scholar 

  • Kopp RA, Holzer TE (1976) Dynamics of coronal hole regions. I—Steady polytropic flows with multiple critical points. Solar Phys 49: 43–56

    Article  ADS  Google Scholar 

  • Kosugi T, Matsuzaki K, Sakao T, Shimizu T, Sone Y, Tachikawa S, Hashimoto T, Minesugi K, Ohnishi A, Yamada T, Tsuneta S, Hara H, Ichimoto K, Suematsu Y, Shimojo M, Watanabe T, Shimada S, Davis JM, Hill LD, Owens JK, Title AM, Culhane JL, Harra LK, Doschek GA, Golub L (2007) The Hinode (Solar-B) mission: an overview. Solar Phys 243: 3–17

    Article  ADS  Google Scholar 

  • Koutchmy S (1977) Study of the June 30, 1973 trans-polar coronal hole. Solar Phys 51: 399–407

    Article  ADS  Google Scholar 

  • Koutchmy S (1994) Coronal physics from eclipse observations. Adv Space Res 14(4):29–39

    Article  ADS  Google Scholar 

  • Koutchmy S, Bocchialini K (1998) White-light polar plumes from solar eclipses. ESA SP-421: 51–62

    ADS  Google Scholar 

  • Koutchmy S, Daniel J-Y, Mouette J, Vilinga J, Noëns J-C, Damé L, Faurobert M, Dara H, Hady A, Semeida M, Sabry M, Domenech, A, Munier J-M, Jimenez R, Legault Th, Viladrich Ch, Kuzin S, Pertsov A, the O.A. Team (2006) Preliminary results from the March 29, 2006 total eclipse observations in Egypt. Proc Ann Meeting Soc Francaise Astron Astrophys, pp 547–548

  • Krieger AS, Timothy AF, Roelof EC (1973) A coronal hole and its identification as the source of a high velocity solar wind stream. Solar Phys 29: 505–525

    Article  ADS  Google Scholar 

  • Laming JM, Feldman U (2001) The solar helium abundance in the outer corona determined from observations with SUMER/SOHO. ApJ 546: 552–559

    Article  ADS  Google Scholar 

  • Laming JM, Feldman U, Schühle U, Lemaire P, Curdt W, Wilhelm K (1997) Electron density diagnostics for the solar upper atmosphere from spectra obtained by SUMER/SOHO. ApJ 485: 911–919

    Article  ADS  Google Scholar 

  • Lamy P, Llebaria A, Koutchmy S, Reynet P, Molodensky M, Howard R, Schwenn R, Simnett G (1997) Characterization of polar plumes from LASCO-C2 images in early 1996. ESA SP-404: 487–490

    ADS  Google Scholar 

  • Landi E (2008) The off-disk thermal structure of a polar coronal hole. ApJ 685: 1270–1276

    Article  ADS  Google Scholar 

  • Landi E, Feldman U, Doschek GA (2007) Neon and oxygen absolute abundances in the solar corona. ApJ 659: 743–749

    Article  ADS  Google Scholar 

  • Lites BW, Card G, Elmore DF, Holzer T, Lecinski A, Streander KV, Tomczyk S, Gurman JB (1999) Dynamics of polar plumes observed at the 1998 February 26 eclipse. Solar Phys 190: 185–206

    Article  ADS  Google Scholar 

  • Llebaria A, Lamy P, DeForest CE, Koutchmy S (1998) Time domain analysis of polar plumes observed with LASCO-C2 and EIT. ESA SP-421: 87–92

    ADS  Google Scholar 

  • Llebaria A, Thernisien A, Lamy P (2001) Projective transform techniques to reconstruct the 3-D structure and the temporal evolution of solar polar plumes. ASP Conf Ser 238: 377–380

    ADS  Google Scholar 

  • Llebaria A, Saez F, Lamy P (2002a) The fractal nature of the polar plumes. ESA SP-508: 391–394

    ADS  Google Scholar 

  • Llebaria A, Thernisien A, Lamy P (2002b) Characterization of the polar plumes from high cadence LASCO-C2 observations. Adv Space Res 29: 343–348

    Article  ADS  Google Scholar 

  • Llebaria A, Boulanger J, Boursier Y (2004) Time domain analysis of polar plumes observed with the LASCO/SOHO coronagraph. In: Proc ADA-III, Astron Data Analysis Conf, eWIC Conf (http://www.bcs.org/server.php?show=conWebDoc.3885)

  • Llebaria A, Loirat J, Lamy P (2010) Restitution of multiple overlaid components on extremely long series of solar corona images. SPIE Proc 7533: 0Y-1–0Y-8

    Google Scholar 

  • Madjarska MS, Doyle JG, Teriaca L, Banerjee D (2003) An EUV bright point as seen by SUMER, CDS, MDI and EIT on-board SOHO. A & A 398: 775–784

    ADS  Google Scholar 

  • Mariska JT (1992) The solar transition region. Cambridge University Press, Cambridge

    Google Scholar 

  • Marsch E, Tu C-Y (1997) Solar wind and chromospheric network. Solar Phys 176: 87–106

    Article  ADS  Google Scholar 

  • Marsch E, Tu C-Y, Wilhelm K, Curdt W, Schühle U, Dammasch IE (1997) Bright plumes and dark lanes as observed in Mg x 625 Å and N v 1239 Å in the solar polar corona. ESA SP-404: 555–560

    ADS  Google Scholar 

  • Mason HE, Young PR, Pike CD, Harrison RA, Fludra A, Bromage BJI, Del Zanna G (1997) Application of spectroscopic diagnostics to early observations with the SOHO Coronal Diagnostic Spectrometer. Solar Phys 170: 143–161

    Article  ADS  Google Scholar 

  • Matthaeus WH, Goldstein ML (1986) Low-frequency 1/f noise in the interplanetary magnetic field. Phys Rev Lett 57: 495–498

    Article  ADS  Google Scholar 

  • Matthaeus WH, Zank GP, Oughton S, Mullan DJ, Dmitruk P (1999) Coronal heating by magnetohydrodynamic turbulence driven by reflected low-frequency waves. ApJ 523: L93–L96

    Article  ADS  Google Scholar 

  • Matthaeus WH, Breech B, Dmitruk P, Bemporad A, Poletto G, Velli M, Romoli M (2007) Density and magnetic field signatures of interplanetary 1/f noise. ApJ 657: L121–L124

    Article  ADS  Google Scholar 

  • Mazzotta P, Mazzitelli G, Colafrancesco S, Vittorio N (1998) Ionization balance for optically thin plasmas: Rate coefficients for all atoms and ions of the elements H to Ni. A & ASS 133: 403–409

    ADS  Google Scholar 

  • McKenzie JF, Banaszkiewicz M, Axford WI (1995) Acceleration of the high speed solar wind. A & A 303: L45–L48

    ADS  Google Scholar 

  • Miralles MP, Cranmer SR, Kohl JL (2001) Ultraviolet coronagraph spectrometer observations of a high-latitude coronal hole with high oxygen temperatures and the next solar cycle polarity. ApJ 560: L193–L196

    Article  ADS  Google Scholar 

  • Moran T, Gopalswamy N, Dammasch IE, Wilhelm K (2001) A multi-wavelength study of solar coronal-hole regions showing radio enhancements. A & A 378: 1037–1045

    ADS  Google Scholar 

  • Moses D, Clette F, Delaboudinière J-P, Artzner GE, Bougnet M, Brunaud J, Carabetian C, Gabriel AH, Hochedez JF, Millier F, Song XY, Au B, Dere KP, Howard RA, Kreplin R, Michels DJ, Defise JM, Jamar C, Rochus P, Chauvineau JP, Marioge JP, Catura RC, Lemen JR, Shing L, Stern RA, Gurman JB, Neupert WM, Newmark J, Thompson B, Maucherat A, Portier-Fozzani F, Berghmans D, Cugnon P, van Dessel EL, Gabryl JR (1997) EIT observations of the extreme ultraviolet Sun. Solar Phys 175: 571–599

    Article  ADS  Google Scholar 

  • Munro RH, Jackson BV (1977) Physical properties of a coronal hole from 2 to 5 R . ApJ 213: 874–886

    Article  ADS  Google Scholar 

  • Neugebauer M, Goldstein BE, McComas DJ, Suess ST, Balogh A (1995) Ulysses observations of microstreams in the solar wind from coronal holes. J Geophys Res 100: 23389–23395

    Article  ADS  Google Scholar 

  • Newkirk G Jr, Harvey J (1968) Coronal polar plumes. Solar Phys 3: 321–343

    Article  ADS  Google Scholar 

  • Noci G, Kohl JL, Withbroe GL (1987) Solar wind diagnostics from Doppler-enhanced scattering. ApJ 315: 706–715

    Article  ADS  Google Scholar 

  • November LJ, Koutchmy S (1996) White-light coronal dark threads and density fine structure. ApJ 466: 512–528

    Article  ADS  Google Scholar 

  • Ofman L (2005) MHD waves and heating in coronal holes. Space Sci Rev 120: 67–94

    Article  ADS  Google Scholar 

  • Ofman L, Davila JM (1995) Alfvén wave heating of coronal holes and the relation to the high-speed solar wind. J Geophys Res 100: 23413–23425

    Article  ADS  Google Scholar 

  • Ofman L, Romoli M, Poletto G, Noci G, Kohl JL (1997) Ultraviolet coronagraph spectrometer observations of density fluctuations in the solar wind. ApJ 491: L111–L114

    Article  ADS  Google Scholar 

  • Ofman L, Nakariakov VM, DeForest CE (1999) Slow magnetosonic waves in coronal plumes. ApJ 514: 441–447

    Article  ADS  Google Scholar 

  • Ofman L, Romoli M, Poletto G, Noci G, Kohl JL (2000a) UVCS WLC observations of compressional waves in the south polar coronal hole. ApJ 529: 592–598

    Article  ADS  Google Scholar 

  • Ofman L, Nakariakov VM, Sehgal N (2000b) Dissipation of slow magnetosonic waves in coronal plumes. ApJ 533: 1071–1083

    Article  ADS  Google Scholar 

  • Parhi S, Suess ST, Sulkanen M (1999) Can Kelvin–Helmholtz instabilities of jet-like structures and plumes cause solar wind fluctuations at 1 AU?. J Geophys Res 104: 14781–14787

    Article  ADS  Google Scholar 

  • Parker EN (1988) Nanoflares and the solar X-ray corona. ApJ 330: 474–479

    Article  ADS  Google Scholar 

  • Pasachoff JM, Rušin V, Druckmüller M, Druckmüllerová H, Bělík M, Saniga M, Minarovjech M, Marková E, Babcock BA, Souza SP, Levitt JS (2008) Polar plume brightening during the 2006 March 29 total eclipse. ApJ 682: 638–643

    Article  ADS  Google Scholar 

  • Pasachoff JM, Rušin V, Druckmüller M, Aniol P, Saniga M, Minarovjech M (2009) The 2008 August 1 eclipse solar-minimum corona unraveled. ApJ 702: 1297–1308

    Article  ADS  Google Scholar 

  • Patsourakos S, Vial J-C (2000) Outflow velocity of interplume regions at the base of polar coronal holes. A & A 359: L1–L4

    ADS  Google Scholar 

  • Phillips KJH, Sylwester J, Sylwester B, Landi E (2003) Solar flare abundances of potassium, argon, and sulphur. ApJ 589: L113–L116

    Article  ADS  Google Scholar 

  • Pinto R, Grappin R, Wang Y-M, Léorat J (2009) Time-dependent hydrodynamical simulations of slow solar wind, coronal inflows, and polar plumes. A & A 497: 537–543

    ADS  Google Scholar 

  • Pinto R, Grappin R, Léorat J (2010) Coronal inflows and giant polar plumes. AIP Conf Proc 1216: 80–83

    Article  ADS  Google Scholar 

  • Pneuman GW, Kopp RA (1978) Downflow in the supergranulation network and its implications for transition region models. Solar Phys 57: 49–64

    Article  ADS  Google Scholar 

  • Poletto G, Parenti S, Noci G, Livi S, Suess ST, Balogh A, McComas DJ (1996) Searching for coronal plumes in Ulysses observations of the far solar wind. A & A 316: 374–383

    ADS  Google Scholar 

  • Popescu MD, Doyle JG, Xia L-D (2004) Network boundary origins of fast solar wind seen in the low transition region. A & A 421: 339–348

    ADS  Google Scholar 

  • Popescu MD, Banerjee D, O’Shea E, Doyle JG, Xia L-D (2005) Very long period activity at the base of solar wind streams. A & A 442: 1087–1090

    ADS  Google Scholar 

  • Pottasch SR (1963) The lower solar corona: interpretation of the ultraviolet spectrum. ApJ 137: 945–966

    Article  ADS  Google Scholar 

  • Raouafi N-E, Harvey JW, Henney CJ (2007a) Latitude distribution of polar magnetic flux in the chromosphere near solar minimum. ApJ 669: 636–641

    Article  ADS  Google Scholar 

  • Raouafi N-E, Harvey JW, Solanki SK (2007b) Properties of solar polar coronal plumes constrained by Ultraviolet Coronagraph Spectrometer data. ApJ 658: 643–656

    Article  ADS  Google Scholar 

  • Raouafi N-E, Petrie GJD, Norton AA, Henney CJ, Solanki SK (2008) Evidence for polar jets as precursors of polar plume formation. ApJ 682: L137–L140

    Article  ADS  Google Scholar 

  • Raymond JC, Doyle JG (1981) Emissivities of strong ultraviolet lines. ApJ 245: 1141–1144

    Article  ADS  Google Scholar 

  • Reisenfeld DB, Mc Comas DJ, Steinberg JT (1999) Evidence of a solar origin for pressure balance structures in the high-latitude solar wind. Geophys Res Lett 26: 1805–1808

    Article  ADS  Google Scholar 

  • Rompolt B (1967) The H α radiation field in the solar corona for moving prominences. Acta Astron 17: 329–340

    ADS  Google Scholar 

  • Saito K (1965a) Polar rays of the solar corona observed at the 1965 May 30 eclipse in the South Pacific. PASJ 17: 421–426

    ADS  Google Scholar 

  • Saito K (1965b) Polar rays of the solar corona, II. PASJ 17: 1–26

    ADS  Google Scholar 

  • Seely JF, Feldman U, Schühle U, Wilhelm K, Curdt W, Lemaire P (1997) Turbulent velocities and ion temperatures in the solar corona obtained from SUMER line widths. ApJ 484: L87–L90

    Article  ADS  Google Scholar 

  • Sheeley NR Jr, Wang Y-M, Hawley SH, Brueckner GE, Dere KP, Howard RA, Koomen MJ, Korendyke CM, Michels DJ, Paswaters SE, Socker DG, St Cyr OC, Wang D, Lamy PL, Llebaria A, Schwenn R, Simnett GM, Plunkett S, Biesecker DA (1997) Measurements of flow speeds in the corona between 2 and 30 R . ApJ 484: 472–478

    Article  ADS  Google Scholar 

  • St Cyr OC, Howard RA, Simnett GM, Gurman JB, Plunkett SP, Sheeley NR, Schwenn R, Koomen MJ, Brueckner GE, Michels DJ, Andrews M, Biesecker DA, Cook J, Dere KP, Duffin R, Einfalt E, Korendyke CM, Lamy PL, Lewis D, Llebaria A, Lyons M, Moses JD, Moulton NE, Newmark J, Paswaters SE, Podlipnik B, Rich N, Schenk KM, Socker DG, Stezelberger ST, Tappin SJ, Thompson B, Wang D (1997) White-light coronal mass ejections: a new perspective from LASCO. ESA SP-415: 103–110

    ADS  Google Scholar 

  • Suematsu Y, Tsuneta S, Ichimoto K, Shimizu T, Otsubo M, Katsukawa Y, Nakagiri M, Noguchi M, Tamura T, Kato Y, Hara H, Kubo M, Mikami I, Saito H, Matsushita T, Kawaguchi N, Nakaoji T, Nagae K, Shimada S, Takeyama N, Yamamuro T (2008) The solar optical telescope of Solar-B (Hinode): the optical telescope assembly. Solar Phys 249: 197–220

    Article  ADS  Google Scholar 

  • Suess ST (1998) Models of plumes: their flow, their geometric spreading, and their mixing with interplume flow. ESA SP-421: 223–230

    ADS  Google Scholar 

  • Suess ST (2000) The Sun and the solar wind close to the Sun. Adv Space Res 26: 761–770

    Article  ADS  Google Scholar 

  • Suess ST, Poletto G, Wang A-H, Wu ST, Cuseri I (1998) The geometric spreading of coronal plumes and coronal holes. Solar Phys 180: 231–246

    Article  ADS  Google Scholar 

  • Teriaca L, Madjarska MS, Doyle JG (2002) Transition region explosive events: do they have a coronal counterpart ?. A & A 392: 309–317

    ADS  Google Scholar 

  • Teriaca L, Poletto G, Romoli M, Biesecker DA (2003) The nascent solar wind: origin and acceleration. ApJ 588: 566–577

    Article  ADS  Google Scholar 

  • Thieme KM, Marsch E, Schwenn R (1990) Spatial structures in high-speed streams as signatures of fine structures in coronal holes. Ann Geophys 8: 713–723

    ADS  Google Scholar 

  • Tian H, Marsch E, Tu C-Y, Xia L-D, He J-S (2008) Sizes of transition-region structures in coronal holes and in the quiet Sun. A & A 482: 267–272

    ADS  Google Scholar 

  • Tian H, Tu C-Y, Marsch E, He J, Kamio S (2010) The nascent fast solar wind observed by the EUV Imaging Spectrometer on board Hinode. ApJ 709: L88–L93

    Article  ADS  Google Scholar 

  • Timothy AF, Krieger AS, Vaiana GS (1975) The structure and evolution of coronal holes. Solar Phys 42: 135–156

    Article  ADS  Google Scholar 

  • Tsuneta S, Ichimoto K, Katsukawa Y, Nagata S, Otsubo M, Shimizu T, Suematsu Y, Nakagiri M, Noguchi M, Tarbell T, Title A, Shine R, Rosenberg W, Hoffmann C, Jurcevich B, Kushner G, Levay M, Lites B, Elmore D, Matsushita T, Kawaguchi N, Saito H, Mikami I, Hill LD, Owens JK (2008a) The solar optical telescope for the Hinode mission: an overview. Solar Phys 249: 167–196

    Article  ADS  Google Scholar 

  • Tsuneta S, Ichimoto K, Katsukawa Y, Lites BW, Matsuzaki K, Nagata S, Orozco Suárez D, Shimizu T, Shimojo M, Shine RA, Suematsu Y, Suzuki TK, Tarbell TD, Title AM (2008b) The magnetic landscape of the Sun’s polar region. ApJ 688: 1374–1381

    Article  ADS  Google Scholar 

  • Tu C-Y, Marsch E, Wilhelm K, Curdt W (1998) Ion temperatures in a solar polar coronal hole observed by SUMER on SOHO. ApJ 503: 475–482

    Article  ADS  Google Scholar 

  • Tu C-Y, Zhou C, Marsch E, Xia L-D, Zhao L, Wang J-X, Wilhelm K (2005) Solar wind origin in coronal funnels. Science 308: 519–523

    Article  ADS  Google Scholar 

  • van de Hulst HC (1950a) The electron density of the solar corona. Bull Astron Inst Netherlands 11: 135–150

    ADS  Google Scholar 

  • van de Hulst HC (1950b) On the polar rays of the corona. Bull Astron Inst Netherlands 11: 150–159

    ADS  Google Scholar 

  • Velli M (1993) On the propagation of ideal, linear Alfvén waves in radially stratified stellar atmospheres and winds. A & A 270: 304–314

    ADS  Google Scholar 

  • Velli M, Habbal SR, Esser R (1994) Coronal plumes and fine strucure in high speed solar wind streams. Space Sci Rev 70: 391–396

    Article  ADS  Google Scholar 

  • Verdini A, Velli M, Matthaeus WH, Oughton S, Dmitruk P (2010) A turbulence-driven model for heating and acceleration of the fast wind in coronal holes. ApJ 708: L116–L120

    Article  ADS  Google Scholar 

  • Veselovsky IS, Panassenko OA (2000) Magnetic coupling between polar plumes and the heliospheric current. Adv Space Res 26: 819–822

    Article  ADS  Google Scholar 

  • von Steiger R, Fisk LA, Gloeckler G, Schwadron NA, Zurbuchen TH (1999) Composition variations in fast solar wind streams. AIP Conf Proc 471: 143–146

    Article  ADS  Google Scholar 

  • von Steiger R, Vial J-C, Bochsler P, Chaussidon M, Cohen CMS, Fleck B, Heber VS, Holweger H, Issautier K, Lazarus AJ, Ogilvie KW, Paquette JA, Reisenfeld DB, Teriaca L, Wilhelm K, Yusainee S, Laming JM, Wiens RC (2001) Measuring solar abundances. AIP Conf Proc 598: 13–22

    Article  ADS  Google Scholar 

  • Waldmeier M (1951) Die Sonnenkorona I. Birkhäuser, Basel

    Google Scholar 

  • Waldmeier M (1955) Die Minimumsstruktur der Sonnenkorona. Z Astrophys 37: 233–260

    ADS  Google Scholar 

  • Waldmeier M (1957) Die Sonnenkorona II. Birkhäuser, Basel

    Google Scholar 

  • Wang Y-M (1994) Polar plumes and the solar wind. ApJ 435: L153–L156

    Article  ADS  Google Scholar 

  • Wang Y-M (1996) Element separation by upward proton drag in the chromosphere. ApJ 464: L91–L94

    Article  ADS  Google Scholar 

  • Wang Y-M (1998) Network activity and the evaporative formation of polar plumes. ApJ 501: L145–L150

    Article  ADS  Google Scholar 

  • Wang Y-M (2009) Coronal holes and open magnetic flux. Space Sci Rev 144: 383–399

    Article  ADS  Google Scholar 

  • Wang Y-M, Sheeley NR Jr (1990) Solar wind speed and coronal flux-tube expansion. ApJ 355: 726–732

    Article  ADS  Google Scholar 

  • Wang Y-M, Sheeley NR Jr (1995) Coronal plumes and their relationship to network activity. ApJ 452: 457–461

    Article  ADS  Google Scholar 

  • Wang Y-M, Sheeley NR Jr (2004) Footpoint switching and the evolution of coronal holes. ApJ 612: 1196–1205

    Article  ADS  Google Scholar 

  • Wang Y-M, Muglach K (2008) Observations of low-latitude coronal plumes. Solar Phys 249: 17–35

    Article  ADS  Google Scholar 

  • Wang Y-M, Hawley SH, Sheeley NR Jr (1996) The magnetic nature of coronal holes. Science 271: 464–469

    Article  ADS  Google Scholar 

  • Wang Y-M, Sheeley NR Jr, Dere KP, Duffin RT, Howard RA, Michels DJ, Moses JD, Harvey JW, Branston DD, Delaboudinière J-P, Artzner GE, Hochedez JF, Defise JM, Catura RC, Lemen JR, Gurman JB, Neupert WM, Newmark J, Thompson B, Maucherat A, Clette F (1997) Association of extreme-ultraviolet imaging telescope (EIT) polar plumes with mixed-polarity magnetic network. ApJ 484: L75–L78

    Article  ADS  Google Scholar 

  • Wang Y-M, Sheeley NR Jr, Socker DG, Howard RA, Brueckner GE, Michels DJ, Moses D, St Cyr OC, Llebaria A, Delaboudinière J-P (1998) Observations of correlated white-light and extreme-ultraviolet jets from polar coronal holes. ApJ 508: 899–907

    Article  ADS  Google Scholar 

  • Wang Y-M, Sheeley NR Jr, Rich NB (2007a) Coronal pseudostreamers. ApJ 658: 1340–1348

    Article  ADS  Google Scholar 

  • Wang Y-M, Biersteker JB, Sheeley NR Jr, Koutchmy S, Mouette J, Druckmüller M (2007b) The solar eclipse of 2006 and the origin of raylike features in the white-light corona. ApJ 660: 882–892

    Article  ADS  Google Scholar 

  • Warren HP, Hassler DM (1999) The density structure of a solar polar coronal hole. J Geophys Res 104: 9781–9789

    Article  ADS  Google Scholar 

  • Widing KG, Feldman U (2001) On the rate of abundance modifications versus time in active region plasmas. ApJ 555: 426–434

    Article  ADS  Google Scholar 

  • Widing KG, Landi E, Feldman U (2005) Coronal element comparison observed by SOHO SUMER in the quiet southeast and northwest limb regions at 1.04 R above the solar disk. ApJ 622: 1211–1215

    Article  ADS  Google Scholar 

  • Wiegelmann T, Solanki SK (2004) Similarities and differences between coronal holes and the quiet Sun: Are loop statistics the key. Solar Phys 225: 227–247

    Article  ADS  Google Scholar 

  • Wiegelmann T, Xia L-D, Marsch E (2005) Links between magnetic fields and plasma flows in a coronal hole. A & A 432: L1–L4

    ADS  Google Scholar 

  • Wilhelm K (1998) Results from the SUMER telescope and spectrometer on SOHO. In: Proc 3rd SOLTIP Symp, 1996, Beijing, pp 75–80

  • Wilhelm K (2000) Solar spicules and macrospicules observed by SUMER. A & A 360: 351–362

    ADS  Google Scholar 

  • Wilhelm K (2006) Solar coronal-hole plasma densities and temperatures. A & A 455: 697–708

    ADS  Google Scholar 

  • Wilhelm K, Bodmer R (1998) Solar EUV and UV emission line observations above a polar coronal hole. Space Sci Rev 85: 371–378

    Article  ADS  Google Scholar 

  • Wilhelm K, Marsch E, Dwivedi BN, Hassler DM, Lemaire P, Gabriel AH, Huber MCE (1998) The solar corona above polar coronal holes as seen by SUMER on SOHO. ApJ 500: 1023–1038

    Article  ADS  Google Scholar 

  • Wilhelm K, Dammasch IE, Marsch E, Hassler DM (2000a) On the source regions of the fast solar wind in polar coronal holes. A & A 353: 749–756

    ADS  Google Scholar 

  • Wilhelm K, Dammasch IE, Xia L-D (2002b) Observations of ultraviolet emission lines in solar coronal holes on the disk with SUMER on SOHO. Adv Space Res 30: 517–522

    Article  ADS  Google Scholar 

  • Wilhelm K, Inhester B, Newmark JS (2002) The inner solar corona seen by SUMER, LASCO/C1, and EIT: Electron densities and temperatures during the rise of the new solar cycle. A & A 382: 328–341

    ADS  Google Scholar 

  • Wilhelm K, Dwivedi BN, Marsch E, Feldman U (2004) Observations of the Sun at vacuum-ultraviolet wavelengths from space. Part I: Concepts and instrumentation. Space Sci Rev 111: 415–480

    Article  ADS  Google Scholar 

  • Wilhelm K, Marsch E, Dwivedi BN, Feldman U (2007) Observations of the Sun at vacuum-ultraviolet wavelengths from space. Part II: results and interpretations. Space Sci Rev 133: 103–179

    Article  ADS  Google Scholar 

  • Wilhelm K, Dwivedi BN, Curdt W (2010) Spectroscopic diagnostics of polar coronal plumes. In: Hasan SS, Rutten RJ (eds) Astrophys Space Sci Proceedings. Springer, Berlin, Heidelberg, pp 454–458

    Google Scholar 

  • Woo R (2007) Filamentary structures of coronal white-light images. Solar Phys 241: 251–261

    Article  ADS  Google Scholar 

  • Woo R, Habbal SR (2000) Connecting the Sun and the solar wind: source regions of the fast wind observed in interplanetary space. J Geophys Res 105: 12667–12674

    Article  ADS  Google Scholar 

  • Wuelser J-P, Lemen JR, Tarbell TD, Wolfson CJ, Cannon JC, Carpenter BA, Duncan DW, Gradwohl GS, Meyer SB, Moore AS, Navarro RL, Pearson JD, Rossi GR, Springer LA, Howard RA, Moses JD, Newmark JS, Delaboudinière J-P, Artzner GE, Auchère F, Bougnet M, Bouyries P, Bridou F, Clotaire J-Y, Colas G, Delmotte F, Jerome A, Lamare M, Mercier R, Mullot M, Ravet M-F, Song X, Bothmer V, Deutsch W (2004) EUVI: the STEREO-SECCHI extreme ultraviolet imager. SPIE Proc 5171: 111–122

    Article  ADS  Google Scholar 

  • Xia L-D, Marsch E, Curdt W (2003) On the outflow in an equatorial coronal hole. A & A 399: L5–L9

    ADS  Google Scholar 

  • Xia L-D, Marsch E, Wilhelm K (2004) On the network structures in solar equatorial coronal holes. Observations of SUMER and MDI on SOHO. A & A 424: 1025–1037

    ADS  Google Scholar 

  • Yamauchi Y, Suess ST, Sakurai T (2002) Relation between pressure balance structures and polar plumes from Ulysses high latitude observations. Geophys Res Lett 29(10): 1383

    Article  ADS  Google Scholar 

  • Yamauchi Y, Suess ST, Steinberg JT, Sakurai T (2004) Differential velocity between solar wind protons and alpha particles in pressure balance structures. J Geophys Res 109: A03104-1–A031041-10

    Article  Google Scholar 

  • Young PR, Klimchuk JA, Mason HE (1999) Temperature and density in a polar plume—measurements from CDS/SOHO. A & A 350: 286–301

    ADS  Google Scholar 

  • Zangrilli L, Poletto G, Nicolosi P, Noci G, Romoli M (2002) Two-dimensional structure of a polar coronal hole at solar minimum: New semiempirical methodology for deriving plasma parameters. ApJ 574: 477–494

    Article  ADS  Google Scholar 

  • Zangrilli L, Fineschi S, Massone G, Capobianco G, Porcu F, Calcidese P (2006) EKPol: liquid crystal polarimeter for eclipse observations of the K-corona. Proc Int Symp SPSE 2006, Waw an Namos, 27–29 March 2006, pp 37–45

  • Zhang HL, Sampson DH, Fontes CJ (1990) Relativistic distorted-wave collision strengths and oscillator strengths for the 33 Cu-like ions with 60 ≤  Z ≤  92. Atomic Nucl Data Tab 44: 31–77

    Article  ADS  Google Scholar 

  • Zhao XP, Hoeksema JT, Scherrer PH (1999) Changes of the boot-shaped coronal hole boundary during Whole Sun Month near sunspot minimum. J Geophys Res 104: 9735–9752

    Article  ADS  Google Scholar 

  • Zhukov AN, Veselovsky IS, Koutchmy S, Llebaria A (2001) Helical magnetic structure of white light polar plumes. IAU Symp 203: 434–436

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Wilhelm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilhelm, K., Abbo, L., Auchère, F. et al. Morphology, dynamics and plasma parameters of plumes and inter-plume regions in solar coronal holes. Astron Astrophys Rev 19, 35 (2011). https://doi.org/10.1007/s00159-011-0035-7

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00159-011-0035-7

Keywords

Navigation