Skip to main content

Advertisement

Log in

Shape optimization with the level-set-method using local volume constraints

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper presents a method to locally constrain multiple material volume domains for structural optimization with the Level Set Method (LSM). Two different Lagrangian formulations and multiplier update methods are used, for both the global and local problem. The local volume domains can be constrained by both equality and inequality constraints. The optimization objective is compliance minimization for well-posed statically loaded structures. For validation, several example problems are established and solved using the proposed method. Results show that the volume ratios for user established sub-domains can be controlled successfully. The local constraint values are met accurately in the case of equality constraints and remain in their feasible domain in the case of inequality constraints. Optimization results are not significantly hindered by the introduction of local volume constraints for comparable problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Allaire G, Jouve F (2008) Minimum stress optimal design with the level set method. Eng Anal Bound Elem 32(11):909–918

    Article  MATH  Google Scholar 

  • Allaire G, Jouve F, Toader AM (2002) A level-set method for shape optimization. Comptes Rendus Mathé,matique 334(12):1125–1130

    Article  MathSciNet  MATH  Google Scholar 

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MathSciNet  MATH  Google Scholar 

  • Allaire G, Gournay FD, Jouve F, Toader AM (2005) Structural optimization using topological and shape sensitivity via a level set method. Control Cybern 34(1):59–80

    MathSciNet  MATH  Google Scholar 

  • Arora J (2012) Introduction to optimum design. Academic Press

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9-10):635–654

    Article  MATH  Google Scholar 

  • Bruggi M, Duysinx P (2012) Topology optimization for minimum weight with compliance and stress constraints. Struct Multidiscip Optim 46(3):369–384

    Article  MathSciNet  MATH  Google Scholar 

  • Challis VJ (2010) A discrete level-set topology optimization code written in Matlab. Struct Multidiscip Optim 41(3):453–464

    Article  MathSciNet  MATH  Google Scholar 

  • De Ruiter M, Van Keulen F (2000) Topology optimization: approaching the material distribution problem using a topological function description. In: International conference on engineering computational technology, pp 111–119

  • De Ruiter MJ, Van Keulen F (2004) Topology optimization using a topology description function. Struct Multidiscip Optim 26(6):406–416

  • dHondt G, Wittig K (2016) CalculiX User’s Guide. MTU

  • Duddeck F (2008) Multidisciplinary optimization of car bodies. Struct Multidiscip Optim 35(4):375–389

    Article  Google Scholar 

  • Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43(8):1453–1478

    Article  MathSciNet  MATH  Google Scholar 

  • Hesse SH, Lukaszewicz DHJA, Duddeck F (2015) A method to reduce design complexity of automotive composite structures with respect to crashworthiness. Compos Struct 129:236–249

    Article  Google Scholar 

  • James KA, Lee E, Martins JRRA (2012) Stress-based topology optimization using an isoparametric level set method. Finite Elem Anal Des 58:20–30

    Article  Google Scholar 

  • Kawamoto A, Matsumori T, Yamasaki S, Nomura T, Kondoh T, Nishiwaki S (2011) Heaviside projection based topology optimization by a PDE-filtered scalar function. Struct Multidiscip Optim 44(1):19–24

    Article  MATH  Google Scholar 

  • Kreissl S (2011) Topology optimization of flow problems modeled by the incompressible Navier-Stokes equations. Ph.D. thesis, University of Colorado Boulder

  • Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41(4):605–620

    Article  Google Scholar 

  • Luo Z, Wang MY, Wang S, Wei P (2008a) A level set-based parameterization method for structural shape and topology optimization. Int J Numer Methods Eng 76(1):1–26

    Article  MathSciNet  MATH  Google Scholar 

  • Luo J, Luo Z, Chen L, Tong L, Wang MY (2008b) A semi-implicit level set method for structural shape and topology optimization. J Comput Phys 227:5561–5581

    Article  MathSciNet  MATH  Google Scholar 

  • Osher SJ, Santosa F (2001) Level set methods for optimization problems involving geometry and constraints: I. Frequencies of a two-density inhomogeneous drum. J Comput Phys 171(1):272–288

    Article  MathSciNet  MATH  Google Scholar 

  • Osher S, Sethian JA (1988) fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12–49

    Article  MathSciNet  MATH  Google Scholar 

  • Otomori M, Yamada T, Izui K, Nishiwaki S (2011) Topology optimization based on the level set method using mathematical programming. Trans Jpn Soc Mech Eng Series C 77:4001–4014

    Article  Google Scholar 

  • Otomori M, Yamada T, Izui K, Nishiwaki S (2014) Matlab code for a level set-based topology optimization method using a reaction diffusion equation. Struct Multidiscip Optim 51(5):1159–1172

    Article  MathSciNet  Google Scholar 

  • Paris J, Navarrina F, Colominas I, Casteleiro M (2009) Topology optimization of continuum structures with local and global stress constraints. Struct Multidiscip Optim 39(4):419–437

    Article  MathSciNet  MATH  Google Scholar 

  • Sethian J, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528

    Article  MathSciNet  MATH  Google Scholar 

  • van Dijk N, Langelaar M, Van Keulen F (2012) Explicit level-set-based topology optimization using an exact Heaviside function and consistent sensitivity analysis. Int J Numer Methods Eng 91(1):67–97

  • van Dijk N P, Maute K, Langelaar M, Van keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48(3):437–472

  • Van Miegroet L, Duysinx P (2007) Stress concentration minimization of 2D filets using x-FEM and level set description. Struct Multidiscip Optim 33(4-5):425–438

  • Wang S, Wang MY (2006) Radial basis functions and level set method for structural topology optimization. Int J Numer Methods Eng 65(12):2060–2090

    Article  MathSciNet  MATH  Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246

    Article  MathSciNet  MATH  Google Scholar 

  • Yamasaki S, Nishiwaki S, Yamada T, Izui K, Yoshimura M (2010) A structural optimization method based on the level set method using a new geometry-based re-initialization scheme. Int J Numer Methods Eng 83 (12):1580–1624

    Article  MathSciNet  MATH  Google Scholar 

  • Yamasaki S, Nomura T, Kawamoto A, Sato K, Nishiwaki S (2011) A level set-based topology optimization method targeting metallic waveguide design problems. Int J Numer Methods Eng 87(9):844–868

    Article  MathSciNet  MATH  Google Scholar 

  • Yang RJ, Chen CJ (1996) Stress-based topology optimization. Struct Multidiscip Optim 12(2):98–105

    Article  Google Scholar 

  • Zhou M, Rozvany G (1991) The coc algorithm, part ii: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1):309–336

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to BMW Group to carry out and publish this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon H. Hesse.

Appendix: Derivatives

Appendix: Derivatives

The Lagrangian \(\mathcal {L}\) is derived in order to transform the inequality constrained optimization problem into an unconstrained problem:

$$ \mathcal{L}(\phi(\mathbf{x})) = c(\phi(\mathbf{x})) + \lambda \left( g(\phi(\mathbf{x})) + s^{2} \right) $$
(42)

where s is a slack variable which converts the inequality into an equality constraint. The optimum is defined by meeting the KKT optimality conditions.

Let us take the compliance equal to the total strain energy:

$$ c = \mathbf{u}^{T} \cdot \tilde{\mathbf{K}} \cdot \mathbf{u} $$
(43)

The stiffness matrix \(\tilde {\mathbf {K}}(\mathbf {\rho })\) is determined as follows:

$$ \tilde{\mathbf{K}}(\mathbf{\rho}) = \bigcup_{e=1}^{N_{e}} \rho_{e}(\phi) \mathbf{K}_{e} $$
(44)

where \(\bigcup \) denotes the assembly of element components, N e is the total number of elements, K e is the element stiffness matrix and ρ e is the element density determined by the LSF values. The strain energy density can be determined as follows:

$$ \begin{array}{ll} c &= \sum\limits_{e=1}^{N_{e}} \rho_{e}(\phi) \mathbf{u}^{T}_{e} \cdot \mathbf{K}_{e} \cdot \mathbf{u}_{e} \\[0.3cm] &= \sum\limits_{e=1}^{N_{e}} \tilde{H}\left( \phi(\mathbf{x})\right) \mathbf{u}^{T}_{e} \cdot \mathbf{K}_{e} \cdot \mathbf{u}_{e} \end{array} $$
(45)

The shape derivative of the Lagrangian \(\mathcal {L}\) is derived as the Fréchet derivative with respect to ϕ as follows:

$$ \frac{\text{d} \mathcal{L}}{\text{d} {\Omega}} = \left\langle \frac{\text{d} \mathcal{L}}{\text{d} \phi}, \psi \right\rangle $$
(46)

where ψ is the variation of the level set function such that ψ ∈ Ψ. Combining (42) and (46), we get:

$$ \frac{\text{d} \mathcal{L}}{\text{d} {\Omega}} = \frac{\text{d} c}{\text{d} {\Omega}} + \lambda \frac{\text{d} g}{\text{d} {\Omega}} $$
(47)

1.1 A.1 Shape derivative of the compliance

Now let us define the shape derivative of the strain energy density as the Fréchet derivative with respect to ϕ:

$$ \frac{\text{d} c}{\text{d} {\Omega}} = \left\langle \frac{\text{d} c}{\text{d} \phi}, \psi \right\rangle $$
(48)

Now by rule of total derivative, (48) can be rewritten as follows:

$$ \begin{array}{ll} \left\langle \frac{\text{d} c}{\text{d} \phi}, \psi \right\rangle &= \left\langle \frac{\partial c}{\partial \phi}, \psi \right\rangle + \left\langle \frac{\partial c}{\partial \mathbf{u}} \frac{\text{d} \mathbf{u}}{\text{d} \phi}, \psi \right\rangle \\[0.5cm] & = \left\langle \frac{\partial c}{\partial \phi}, \psi \right\rangle + \left\langle \frac{\partial c}{\partial \mathbf{u}}, \mathbf{w} \right\rangle \end{array} $$
(49)

The partial derivatives from (49) are derived as follows:

$$ \begin{array}{ll} \frac{\partial c}{\partial \phi} &= {\sum}_{e=1}^{N_{e}} \tilde{\delta}\left( \phi(\mathbf{x})\right) \mathbf{u}^{T}_{e} \cdot \mathbf{K}_{e} \cdot \mathbf{u}_{e} \\[0.5cm] \frac{\partial c}{\partial \mathbf{u}} &= {\sum}_{e=1}^{N_{e}} \tilde{H}\left( \phi(\mathbf{x})\right) 2 \mathbf{K}_{e} \cdot \mathbf{u}_{e} \end{array} $$
(50)

The Fréchet derivatives for the condition \(\tilde {\mathbf {K}} \mathbf {u} - \mathbf {f}^{\text {ext}} = 0\) are as follows:

$$ \begin{array}{ll} \frac{\text{d} \mathbf{f}^{\text{ext}}}{\text{d} {\Omega}} &= 0 \\[0.5cm] \frac{\text{d} \mathbf{a}}{\text{d} {\Omega}} &= \left\langle \frac{\text{d} \mathbf{a}}{\text{d} \phi}, \psi \right\rangle = \left\langle \frac{\partial \mathbf{a}}{\partial \phi}, \psi \right\rangle + \left\langle \frac{\partial \mathbf{a}}{\partial \mathbf{u}}, \mathbf{w} \right\rangle \end{array} $$
(51)

where \(\mathbf {a} = \tilde {\mathbf {K}} \mathbf {u}\). The partial derivatives from (51) are derived as follows:

$$ \begin{array}{ll} \frac{\partial \mathbf{a}}{\partial \phi} &= {\sum}_{e=1}^{N_{e}} \tilde{\delta}\left( \phi(\mathbf{x})\right) \mathbf{K}_{e} \cdot \mathbf{u}_{e} \\[0.5cm] \frac{\partial \mathbf{a}}{\partial \mathbf{u}} &= {\sum}_{e=1}^{N_{e}} \tilde{H}\left( \phi(\mathbf{x})\right) \mathbf{K}_{e} \end{array} $$
(52)

From combining (51) and (52) follows:

$$\begin{array}{@{}rcl@{}} \begin{array}{l} \left\langle \frac{\partial \mathbf{a}}{\partial \mathbf{u}}, \mathbf{w} \right\rangle = - \left\langle \frac{\partial \mathbf{a}}{\partial \phi}, \psi \right\rangle {\sum}_{e=1}^{N_{e}} \tilde{H}\left( \phi(\mathbf{x})\right) \mathbf{K}_{e} \cdot \mathbf{w} {\ldots} \\ \hspace{2.6pc} = - {\sum}_{e=1}^{N_{e}} \tilde{\delta}\left( \phi(\mathbf{x})\right) \mathbf{K}_{e} \cdot \mathbf{u}_{e} \psi \end{array} \\ \end{array} $$
(53)

Now combining (49) and (50) and substituting (53), we get the following:

$$\begin{array}{@{}rcl@{}} \begin{array}{rl} \frac{\text{d} c}{\text{d} {\Omega}} =& {\sum}_{e=1}^{N_{e}} \tilde{\delta}\left( \phi(\mathbf{x})\right) \mathbf{u}^{T}_{e} \cdot \mathbf{K}_{e} \cdot \mathbf{u}_{e} \psi \\ &+ \ldots {\sum}_{e=1}^{N_{e}} \tilde{H}\left( \phi(\mathbf{x})\right) 2 \mathbf{K}_{e} \cdot \mathbf{u}_{e} \cdot \mathbf{w} \\ = & {\sum}_{e=1}^{N_{e}} \tilde{\delta}\left( \phi(\mathbf{x})\right) \mathbf{u}^{T}_{e} \cdot \mathbf{K}_{e} \cdot \mathbf{u}_{e} \psi \\&- \ldots {\sum}_{e=1}^{N_{e}} 2 \tilde{\delta}\left( \phi(\mathbf{x})\right) \mathbf{u}^{T}_{e} \cdot \mathbf{K}_{e} \cdot \mathbf{u}_{e} \psi \end{array} \\ \end{array} $$
(54)

This leads to the following relation for the shape derivative of the strain energy density:

$$ \frac{\text{d} c}{\text{d} {\Omega}} = - \sum\limits_{e=1}^{N_{e}} \tilde{\delta}\left( \phi(\mathbf{x})\right) \mathbf{u}^{T}_{e} \cdot \mathbf{K}_{e} \cdot \mathbf{u}_{e} \psi $$
(55)

1.2 A.2 Shape derivative of the global volume constraint

The derivation of the shape derivative of the Volume constraint follows the same procedure as with the compliance. The volume V is expressed as follows:

$$ V(\phi(\mathbf{x})) = \sum\limits_{e=1}^{N_{e}} \tilde{H}\left( \phi(\mathbf{x})\right) $$
(56)

The shape derivative of the constraint g(ϕ(x)) is derived as follows:

$$ \frac{\text{d} g}{\text{d} {\Omega}} = \left\langle \frac{\text{d} g}{\text{d} \phi}, \psi \right\rangle = \left\langle \frac{\partial g}{\partial \phi}, \psi \right\rangle $$
(57)

This leads to the following definition of the constraint shape derivative:

$$ \frac{\text{d} g}{\text{d} {\Omega}} = \sum\limits_{e=1}^{N_{e}} \tilde{\delta}\left( \phi(\mathbf{x})\right) \psi $$
(58)

1.3 A.3 Shape derivative of the Lagrangian

The shape derivative of the Lagrangian can now be defined by substituting the results from (55) and (58) into (47) and taking the derivative with respect to the LSF values:

$$ \frac{\text{d} \mathcal{L}}{\text{d} \phi} = \sum\limits_{e=1}^{N_{e}} \tilde{\delta}\left( \phi(\mathbf{x})\right) \left[ - \mathbf{u}^{T}_{e} \cdot \mathbf{K}_{e} \cdot \mathbf{u}_{e} + \lambda \right] $$
(59)

The boundary normal velocity V N (x, t) can now be defined as:

$$ V_{N}(\mathbf{x},t) = \frac{\text{d} \mathcal{L}}{\text{d} \phi} $$
(60)

The Lagrangian formulation of the optimization problem contains a slack variable s to account for the inequality constraint. The switching condition from the KKT conditions can be satisfied in two ways:

  • λ = 0: This implies that the inequality condition is inactive, meaning that the suggested optimum features a lower volume fraction than \(V_{\max }\). However, for problems with fixed boundary conditions and fixed loads, not considering body forces, the compliance is minimized when the design domain is completely filled with material. This fact makes this case physically irrelevant.

  • s = 0: Zero slack implies an active inequality constraint, g(ϕ) = 0, indicating that \(V(\phi ) = V_{\max }\) for the optimum solution.

These cases show that the optimum will always lie at \(V(\phi ) = V_{\max }\). As a result of this, one could define the volume constraint in (21) as an equality constraint. The slack variable s is now redundant and omitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hesse, S.H., Leidinger, L.F., Kremheller, J. et al. Shape optimization with the level-set-method using local volume constraints. Struct Multidisc Optim 57, 115–130 (2018). https://doi.org/10.1007/s00158-017-1741-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1741-1

Keywords

Navigation