Skip to main content
Log in

Topology optimization of structures with gradient elastic material

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Topology optimization of structures and mechanisms with microstructural length-scale effect is investigated based on gradient elasticity theory. To meet the higher-order continuity requirement in gradient elasticity theory, Hermite finite elements are used in the finite element implementation. As an alternative to the gradient elasticity, the staggered gradient elasticity that requires C 0-continuity, is also presented. The solid isotropic material with penalization (SIMP) like material interpolation schemes are adopted to connect the element density with the constitutive parameters of the gradient elastic solid. The effectiveness of the proposed formulations is demonstrated via numerical examples, where remarkable length-scale effects can be found in the optimized topologies of gradient elastic solids as compared with linear elastic solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Aifantis EC (1992) On the role of gradients in the localization of deformation and fracture. Int J Eng Sci 30(10):1279–1299

    Article  MATH  Google Scholar 

  • Altan B, Aifantis EC (1992) On the structure of the mode III crack-tip in gradient elasticity. Scr Metall Mater 26(2):319–324

    Article  Google Scholar 

  • Askes H, Aifantis EC (2011) Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int J Solids Struct 48(13):1962–1990

    Article  Google Scholar 

  • Askes H, Morata I, Aifantis EC (2008) Finite element analysis with staggered gradient elasticity. Comput Struct 86(11):1266–1279

    Article  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654

    MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158

    Article  MathSciNet  MATH  Google Scholar 

  • Bruggi M, Taliercio A (2012) Maximization of the fundamental eigenfrequency of micropolar solids through topology optimization. Struct Multidiscip Optim 46(4):549–560

    Article  MathSciNet  MATH  Google Scholar 

  • Bruns TE, Tortorelli DA (2001a) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459. doi:10.1016/s0045-7825(00)00278-4

    Article  MATH  Google Scholar 

  • Bruns TE, Tortorelli DA (2001b) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26):3443–3459

    Article  MATH  Google Scholar 

  • Christensen PW, Klarbring A (2008) An introduction to structural optimization, vol 153. Springer Science & Business Media

  • Cosserat E, Cosserat F (1909) Théorie des corps déformables. Paris

  • Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38

    Article  MathSciNet  Google Scholar 

  • Eringen AC (1965) Linear theory of micropolar elasticity. DTIC Document

  • Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review*. Appl Mech Rev 54(4):331–390

    Article  Google Scholar 

  • Fleck N, Hutchinson J (1997) Strain gradient plasticity. Adv Appl Mech 33:296–361

    MATH  Google Scholar 

  • Fried E, Gurtin ME (2006) Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales. Arch Ration Mech Anal 182(3):513–554. doi:10.1007/s00205-006-0015-7

    Article  MathSciNet  MATH  Google Scholar 

  • Green AE, Rivlin RS (1964) Multipolar continuum mechanics. Arch Ration Mech Anal 17(2):113–147

    Article  MathSciNet  MATH  Google Scholar 

  • Javili A, dell’Isola F, Steinmann P (2013) Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J Mech Phys Solids 61(12):2381–2401. doi:10.1016/j.jmps.2013.06.005

    Article  MathSciNet  MATH  Google Scholar 

  • Kröner E (1963) On the physical reality of torque stresses in continuum mechanics. Int J Eng Sci 1(2):261–278

    Article  Google Scholar 

  • Lakes R (1995) Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. Continuum models for materials with microstructure 1–25

  • Li L, Khandelwal K (2014) Two-point gradient-based MMA (TGMMA) algorithm for topology optimization. Comput Struct 131:34–45. doi:10.1016/j.compstruc.2013.10.010

    Article  Google Scholar 

  • Li L, Khandelwal K (2015a) An adaptive quadratic approximation for structural and topology optimization. Comput Struct 151:130–147. doi:10.1016/j.compstruc.2015.01.013

    Article  Google Scholar 

  • Li L, Khandelwal K (2015b) Topology optimization of structures with length-scale effects using elasticity with microstructure theory. Comput Struct 157:165–177. doi:10.1016/j.compstruc.2015.05.026

    Article  Google Scholar 

  • Li L, Khandelwal K (2015c) Volume preserving projection filters and continuation methods in topology optimization. Eng Struct 85:144–161. doi:10.1016/j.engstruct.2014.10.052

    Article  Google Scholar 

  • Liu S, Su W (2010) Topology optimization of couple-stress material structures. Struct Multidiscip Optim 40(1–6):319–327

    Article  MathSciNet  MATH  Google Scholar 

  • Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16(1):51–78

    Article  MathSciNet  MATH  Google Scholar 

  • Mindlin R, Eshel N (1968) On first strain-gradient theories in linear elasticity. Int J Solids Struct 4(1):109–124

    Article  MATH  Google Scholar 

  • Mindlin R, Tiersten H (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11(1):415–448

    Article  MathSciNet  MATH  Google Scholar 

  • Papanicolopulos SA, Zervos A, Vardoulakis I (2009) A three-dimensional C1 finite element for gradient elasticity. Int J Numer Methods Eng 77(10):1396–1415. doi:10.1002/nme.2449

    Article  MATH  Google Scholar 

  • Petera J, Pittman JFT (1994) Isoparametric Hermite elements. Int J Numer Methods Eng 37(20):3489–3519. doi:10.1002/nme.1620372006

    Article  MathSciNet  MATH  Google Scholar 

  • Polizzotto C (2003) Gradient elasticity and nonstandard boundary conditions. Int J Solids Struct 40(26):7399–7423. doi:10.1016/j.ijsolstr.2003.06.001

    Article  MATH  Google Scholar 

  • Polizzotto C (2013) A second strain gradient elasticity theory with second velocity gradient inertia – part I: constitutive equations and quasi-static behavior. Int J Solids Struct 50(24):3749–3765. doi:10.1016/j.ijsolstr.2013.06.024

    Article  Google Scholar 

  • Polizzotto C (2016) A note on the higher order strain and stress tensors within deformation gradient elasticity theories: physical interpretations and comparisons. Int J Solids Struct 90:116–121. doi:10.1016/j.ijsolstr.2016.04.001

    Article  Google Scholar 

  • Rovati M, Veber D (2007) Optimal topologies for micropolar solids. Struct Multidiscip Optim 33(1):47–59

    Article  Google Scholar 

  • Ru C, Aifantis EC (1993) A simple approach to solve boundary-value problems in gradient elasticity. Acta Mech 101(1–4):59–68

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25(4):493–524

    Article  Google Scholar 

  • Sigmund O, Maute K (2012) Sensitivity filtering from a continuum mechanics perspective. Struct Multidiscip Optim 46(4):471–475

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055

    Article  MathSciNet  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75

    Article  Google Scholar 

  • Stölken J, Evans A (1998) A microbend test method for measuring the plasticity length scale. Acta Mater 46(14):5109–5115

    Article  Google Scholar 

  • Su W, Liu S (2015) Topology design for maximization of fundamental frequency of couple-stress continuum. Struct Multidiscip Optim 1–14

  • Svanberg K (1987) The method of moving asymptotes- a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Tenek LT, Aifantis E (2002) A two-dimensional finite element implementation of a special form of gradient elasticity. Comput Model Eng Sci 3(6):731–742

    MathSciNet  MATH  Google Scholar 

  • Toupin RA (1962) Elastic materials with couple-stresses. Arch Ration Mech Anal 11(1):385–414

    Article  MathSciNet  MATH  Google Scholar 

  • Veber D, Taliercio A (2012) Topology optimization of three-dimensional non-centrosymmetric micropolar bodies. Struct Multidiscip Optim 45(4):575–587

    Article  MathSciNet  MATH  Google Scholar 

  • Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784

    Article  MATH  Google Scholar 

  • Zervos A (2008) Finite elements for elasticity with microstructure and gradient elasticity. Int J Numer Methods Eng 73(4):564–595

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The presented work is supported in part by the US National Science Foundation through Grant CMS-1055314. Any opinions, findings, conclusions, and recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapil Khandelwal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhang, G. & Khandelwal, K. Topology optimization of structures with gradient elastic material. Struct Multidisc Optim 56, 371–390 (2017). https://doi.org/10.1007/s00158-017-1670-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1670-z

Keywords

Navigation