Skip to main content
Log in

Topology optimization of hyperbolic metamaterials for an optical hyperlens

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper presents a level set-based topology optimization method for the microstructural design of an optical hyperlens. The resolution of conventional optics is generally diffraction limited, but the diffraction limit can be overcome by a hyperlens that converts evanescent waves to propagation waves, utilizing a cylindrical geometry to magnify the subwavelength features of imaged objects, which allows such features to be resolved beyond the diffraction limit at the hyperlens output. To support electromagnetic waves that contain information of subwavelength features, the hyperlens must have material properties that include a positive permittivity in the angular direction and a negative permittivity in the radial direction. Here, an energy-based homogenization method is used to obtain the effective permittivity of a metamaterial hyperlens unit cell. A level set-based topology optimization is applied so that the boundaries of the structure are clearly expressed. Moreover, a finite element mesh regeneration scheme is used to precisely capture the boundaries of the metal and dielectric materials of the unit cell that will ultimately form the hyperlens. The optimization algorithm uses the finite element method (FEM) to solve the equilibrium and adjoint equations. Optimum design examples for the design of a hyperlens microstructure are provided to confirm the utility and validity of the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Andkjær J, Nishiwaki S, Nomura T, Sigmund O (2010) Topology optimization of grating couplers for the efficient excitation of surface plasmons. J Opt Soc Am B 27(9):1828–1832

    Article  Google Scholar 

  • Andreasen CS, Andreassen E, Jensen JS, Sigmund O (2014) On the realization of the bulk modulus bounds for two-phase viscoelastic composites. J Mech Phys Solids 63:228–241

    Article  MathSciNet  Google Scholar 

  • Andreassen E, Lazarov BS, Sigmund O (2014) Design of manufacturable 3D extremal elastic microstructure. Mech Mater 69(1):1–10

    Article  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Choi JS, Yoo J (2010) Design and application of layered composites with the prescribed magnetic permeability. Int J Numer Meth Engng 82(1):1–25

    MATH  Google Scholar 

  • Diaz AR, Sigmund O (2010) A topology optimization method for design of negative permeability metamaterials. Struct Multidisc Optim 41(2):163–177

    Article  MathSciNet  MATH  Google Scholar 

  • El-Kahlout Y, Kiziltas G (2011) Inverse synthesis of electromagnetic materials using homogenization based topology optimization. Prog Elec Res 115:343–380

    Article  Google Scholar 

  • Fang N, Lee H, Sun C, Zhang X (2005) Sub-diffraction-limited optical imaging with a silver superlens. Science 308(5721):534–537

    Article  Google Scholar 

  • Guest JK, Prévost JH (2007) Design of maximum permeability material structures. Comput Methods Appl Mech Eng 196(4–6):1006–1017

    Article  MathSciNet  MATH  Google Scholar 

  • Hashin Z (1983) Analysis of composite materials — a survey. J Appl Mech 50(3):481–505

    Article  MATH  Google Scholar 

  • Jacob Z, Alekseyev LV, Narimanov E (2006) Optical hyperlens: far-field imaging beyond the diffraction limit. Opt Express 14(18):8247–8256

    Article  Google Scholar 

  • Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379

    Article  Google Scholar 

  • Nishiwaki S, Nomura T, Kinoshita S, Izui K, Yoshimura M, Sato K, Hirayama K (2009) Topology optimization for cross-section designs of electromagnetic waveguides targeting guiding characteristics. Finite Elem Anal Des 45(12):944–957

    Article  Google Scholar 

  • Larsen UD, Sigmund O, Bouwstra S (1997) Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio. J Microelectromech Syst 6(2):99–106

    Article  Google Scholar 

  • Liu Z, Lee H, Xiong Y, Sun C, Zhang X (2007) Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315(5819):1686

    Article  Google Scholar 

  • Lu D, Liu Z (2012) Hyperlenses and metalenses for far-field super-resolution imaging. Nat Commun 3:1205

    Google Scholar 

  • Lu L, Yamamoto T, Otomori M, Yamada T, Izui K, Nishiwaki S (2013) Topology optimization of an acoustic metamaterial with negative bulk modulus using local resonance. Finite Elem Anal Des 72:1–12

    Article  MathSciNet  MATH  Google Scholar 

  • Ma ZD, Kikuchi N, Cheng HC (1995) Topological design for vibrating structures. Comput Methods Appl Mech Eng 121(1–4):259–280

    Article  MathSciNet  MATH  Google Scholar 

  • Oh JH, Ahn YK, Kim YY (2015) Maximization of operating frequency ranges of hyperbolic elastic metamaterials by topology optimization. Struct Multidisc Optim 52(1):1–18

    Article  MathSciNet  Google Scholar 

  • Otomori M, Andkjær J, Sigmund O, Izui K, Nishiwaki S (2012a) Inverse design of dielectric materials by topology optimization. Prog Elec Res 127:93–120

    Article  MATH  Google Scholar 

  • Otomori M, Yamada T, Izui K, Nishiwaki S, Andkjær J (2012b) A topology optimization method based on the level set method for the design of negative permeability dielectric metamaterials. Comput Methods Appl Mech Eng 237–240:192–211

    Article  MathSciNet  MATH  Google Scholar 

  • Otomori M, Yamada T, Izui K, Nishiwaki S (2015) Matlab code for a level set-based topology optimization method using a reaction diffusion equation. Struct Multidisc Optim 51(5):1159–1172

    Article  MathSciNet  Google Scholar 

  • Rho J, Ye Z, Xiong Y, Yin X, Liu Z, Choi H, Bartal G, Zhang X (2010) Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nat Commun 1:143

    Article  Google Scholar 

  • Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Structures 31(17):2313–2329

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O (2009) Systematic design of metamaterials by topology optimization. In: Pyrz R, Rauhe JC (eds) IUTAM Symposium on modelling nanomaterials and nanosystems, vol 13. Springer, Netherlands, pp 151–159

    Chapter  Google Scholar 

  • Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067

    Article  MathSciNet  Google Scholar 

  • Smith DR, Schurig D (2003) Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys Rev Lett 90:077405

    Article  Google Scholar 

  • Yamada T, Izui K, Nishiwaki S, Takezawa A (2010) A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput Methods Appl Mech Eng 199(45–48):2876–2891

    Article  MathSciNet  MATH  Google Scholar 

  • Yamasaki S, Nishiwaki S, Yamada T, Izui K, Yoshimura M (2010) A structural optimization method based on the level set method using a new geometry-based re-initialization scheme. Int J Numer Meth Engng 83(12):1580–1624

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou S, Li W, Chen Y, Sun G, Li Q (2011) Topology optimization for negative permeability metamaterials using level-set algorithm. Acta Mater 59(7):2624–2636

    Article  Google Scholar 

  • Zhou S, Li W, Li Q (2010) Design of 3-D periodic metamaterials for electromagnetic properties. IEEE Trans Microw Theory Techn 58(4):910–916

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Cross-ministerial Strategic Innovation Promotion Program (SIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Otomori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otomori, M., Yamada, T., Izui, K. et al. Topology optimization of hyperbolic metamaterials for an optical hyperlens. Struct Multidisc Optim 55, 913–923 (2017). https://doi.org/10.1007/s00158-016-1543-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1543-x

Keywords

Navigation