Skip to main content
Log in

Topology optimization of a coupled thermal-fluid system under a tangential thermal gradient constraint

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper presents a continuous adjoint approach for topology optimization of a coupled heat transfer and laminar fluid flow system under tangential thermal gradient (TTG) constraints. In this system, the thermal gradient along the boundary of multiple heat sources needs to be controlled. The design goals are to minimize the temperature of the domain, the fluid power dissipation and the TTG along the boundary of the heat sources. The first two goals are combined into a single cost function with weight variables. The TTG is constrained in one of two forms, an integral form where the integral of TTG squares along the boundaries of heat sources is constrained, or a point-wise form where TTG is constrained point-wise. A gradient-based approach is developed to obtain the optimized designs. A salient feature of our approach is the use of the continuous adjoint approach to derive gradients of both the cost function and two forms of TTG constraints. Numerical examples demonstrate that the continuous adjoint approach leads to successful topological optimization of the constrained thermal-fluid system. The use of TTG constraint is effective in lowering the TTG along the heat source boundaries. The resulting designs exhibit clear black/white contrast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alexandersen J, Aage N, Andreasen CS, Sigmund O (2014) Topology optimisation for natural convection problems. Int J Numer Methods Fluids 76(10):699–721

    Article  MathSciNet  Google Scholar 

  • Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MathSciNet  MATH  Google Scholar 

  • Andreasen CS, Gersborg AR, Sigmund O (2009) Topology optimization of microfluidic mixers. Int J Numer Methods Fluids 61(5):498–513

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Structural Optimization 1(4):193–202

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer

  • Borrvall T, Petersson J (2003) Topology optimization of fluids in stokes flow. Int J Numer Methods Fluids 41(1):77–107

    Article  MathSciNet  MATH  Google Scholar 

  • Bourdin B, Chambolle A (2003) Design-dependent loads in topology optimization. ESAIM Control, Optimisation and Calculus of Variations 9:19–48

    Article  MathSciNet  MATH  Google Scholar 

  • Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38

    Article  MathSciNet  Google Scholar 

  • Dede EM (2009) Multiphysics topology optimization of heat transfer and fluid flow systems. In: Proceedings of the COMSOL users conference

  • Dede EM (2010) Multiphysics optimization, synthesis, and application of jet impingement target surfaces. In: 2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). IEEE, pp 1–7

  • Deng Y, Liu Z, Zhang P, Liu Y, Yihui W (2011) Topology optimization of unsteady incompressible navier–stokes flows. J Comput Phys 230(17):6688–6708

    Article  MathSciNet  MATH  Google Scholar 

  • Deng Y, Liu Z, Yihui W (2013) Topology optimization of steady and unsteady incompressible navier–stokes flows driven by body forces. Struct Multidiscip Optim 47(4):555–570

    Article  MathSciNet  MATH  Google Scholar 

  • Donea J, Huerta A (2003) Finite element methods for flow problems. Wiley

  • Giles MB, Pierce NA (2000) An introduction to the adjoint approach to design. Flow Turbul Combust 65(3–4):393–415

    Article  MATH  Google Scholar 

  • Gunzburger MD (2003) Perspectives in flow control and optimization, vol 5. Siam

  • Kawamoto A, Matsumori T, Yamasaki S, Nomura T, Kondoh T, Nishiwaki S (2011) Heaviside projection based topology optimization by a PDE-filtered scalar function. Struct Multidiscip Optim 44(1):19–24

    Article  MATH  Google Scholar 

  • Kays WM, London AL (1984) Compact heat exchangers

  • Khadra K, Angot P, Parneix S, Caltagirone J-P (2000) Fictitious domain approach for numerical modelling of navier–stokes equations. Int J Numer Methods Fluids 34(8):651– 684

    Article  MATH  Google Scholar 

  • Koga AA, Lopes ECC, Villa Nova HF, de Lima CR, Silva ECN (2013) Development of heat sink device by using topology optimization. Int J Heat Mass Transfer 64:759–772

    Article  Google Scholar 

  • Kontoleontos EA, Papoutsis-Kiachagias EM, Zymaris AS, Papadimitriou DI, Giannakoglou KC (2013) Adjoint-based constrained topology optimization for viscous flows, including heat transfer. Eng Optim 45(8):941–961

    Article  MathSciNet  Google Scholar 

  • Lazarov BS, Sigmund O (2011) Filters in topology optimization based on Helmholtz-type differential equations. Int J Numer Methods Eng 86(6):765–781

    Article  MathSciNet  MATH  Google Scholar 

  • Lee K (2012) Topology optimization of convective cooling system designs. PhD thesis, The University of Michigan

  • Lions JL (1971) Optimal control of systems governed by partial differential equations problèmes aux limites

  • Logg A, Mardal K-A, Wells G (2012) Automated solution of differential equations by the finite element method: The FEniCS book, vol 84. Springer Science & Business Media

  • Makhija D, Maute K (2015) Level set topology optimization of scalar transport problems. Struct Multidiscip Optim 51(2):267– 285

    Article  MathSciNet  Google Scholar 

  • Marck G, Nemer M, Harion J-L (2013) Topology optimization of heat and mass transfer problems: laminar flow. Numerical Heat Transfer Part B: Fundamentals 63(6):508–539

    Article  MATH  Google Scholar 

  • Martins JRRA, Hwang JT (2013) Review and unification of methods for computing derivatives of multidisciplinary computational models. AIAA J 51(11):2582–2599

    Article  Google Scholar 

  • Matsumori T, Kondoh T, Kawamoto A, Nomura T (2013) Topology optimization for fluid-thermal interaction problems under constant input power. Struct Multidiscip Optim 47(4):571–581

    Article  MATH  Google Scholar 

  • Matsutani T, Nakada T, Shinpo Y, Hatano M (2005) Water jacket spacer for improvement of cylinder bore temperature distribution. Technical report, SAE Technical Paper

  • Mlejnek HP (1992) Some aspects of the genesis of structures. Structural Optimization 5(1-2):64–69

    Article  Google Scholar 

  • Nadarajah S, Jameson A (2000) A comparison of the continuous and discrete adjoint approach to automatic aerodynamic optimization. AIAA paper 667:2000

    Google Scholar 

  • Olesen LH, Okkels F, Bruus H (2006) A high-level programming-language implementation of topology optimization applied to steady-state navier-stokes flow. Int J Numer Methods Eng 65:9751001

    Article  MathSciNet  MATH  Google Scholar 

  • Othmer C (2008) A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows. Int J Numer Methods Fluids 58(8):861–877

    Article  MathSciNet  MATH  Google Scholar 

  • Petra N, Stadler G (2011) Model variational inverse problems governed by partial differential equations. Technical report, DTIC Document

  • Pinnau R, Ulbrich M (2008) Optimization with PDE constraints, vol 23. Springer Science & Business Media

  • Qian X, Sigmund O (2012) Topological design of electromechanical actuators with robustness toward over-and under-etching. Comput Methods Appl Mech Eng 253:237–251

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Multidiscip Optim 16(1):68–75

    Article  Google Scholar 

  • Slawig T (2006) Pde-constrained control using FEMLAB–control of the Navier–Stokes equations. Numerical Algorithms 42(2):107–126

    Article  MathSciNet  MATH  Google Scholar 

  • Suresh K (2013) Efficient generation of large-scale pareto-optimal topologies. Struct Multidiscip Optim 47 (1):49–61

    Article  MathSciNet  MATH  Google Scholar 

  • Sokolowski J, Zochowski A (1999) On the topological derivative in shape optimization. SIAM J Control Optim 37(4):1251–1272

    Article  MathSciNet  MATH  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes: a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Tröltzsch F (2010) Optimal control of partial differential equations: theory, methods, and applications, volume 112 Amer Mathematical Society

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1):227–246

    Article  MathSciNet  MATH  Google Scholar 

  • Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896

    Article  Google Scholar 

  • Yaji K, Yamada T, Kubo S, Izui K, Nishiwaki S (2015) A topology optimization method for a coupled thermal–fluid problem using level set boundary expressions. Int J Heat Mass Transfer 81:878–888

    Article  Google Scholar 

  • Yoon GH (2010) Topological design of heat dissipating structure with forced convective heat transfer. J Mech Sci Technol 24(6):1225–1233

    Article  Google Scholar 

  • Zhou M, Rozvany GIN (1991) The coc algorithm, part ii: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1):309–336

    Article  Google Scholar 

Download references

Acknowledgments

The first author wants to acknowledge the support from the National Science Foundation grant #1404665 #1435072. The authors are thankful for reviewers’ thorough and constructive feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, X., Dede, E.M. Topology optimization of a coupled thermal-fluid system under a tangential thermal gradient constraint. Struct Multidisc Optim 54, 531–551 (2016). https://doi.org/10.1007/s00158-016-1421-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1421-6

Keywords

Navigation