Skip to main content
Log in

Level set topology optimization of scalar transport problems

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper studies level set topology optimization of scalar transport problems, modeled by an advection-diffusion equation. Examples of such problems include the transport of energy or mass in a fluid. The geometry is defined via a level set method (LSM). The flow field is predicted by a hydrodynamic Boltzmann transport model and the scalar transport by a standard advection-diffusion model. Both models are discretized by the extended Finite Element Method (XFEM). The hydrodynamic Boltzmann equation is well suited for the XFEM as it allows for convenient enforcement of boundary conditions along immersed boundaries. In contrast, Navier Stokes models require more complex approaches to impose Dirichlet boundary conditions, such as stabilized Lagrange multiplier and Nitsche methods.

The combination of the LSM and the XFEM is an alternative to density-based topology optimization methods which have been applied previously to scalar transport problems. Density methods often suffer from a fuzzy description of boundaries, spurious diffusion through “void” regions, and the presence of fictitious material in the optimized design. This paper illustrates that the LSM/XFEM approach addresses these three concerns. The proposed approach is studied with two dimensional problems at steady state conditions. Both “fluid-void” and “fluid-solid” optimization problems are considered. For the “fluid-void” case, optimization results are obtained without spurious diffusion through “void” regions. For the “fluid-solid” case, the analysis recovers strong gradients of the flow and scalar fields at the fluid-solid interface, using moderately refined meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MATH  MathSciNet  Google Scholar 

  • Andreasen CS, Gersborg AR, Sigmund O (2009) Topology optimization of microfluidic mixers. Int J Numer Methods Fluids 61(5):498–513

    Article  MATH  MathSciNet  Google Scholar 

  • Angot P, Bruneau CH, Fabrie P (1999) A penalization method to take into account obstacles in viscous flows. Numer Math 81:497–520

    Article  MATH  MathSciNet  Google Scholar 

  • Avila M, Codina R, Principe J (2011) Spatial approximation of the radiation transport equation using a subgrid-scale finite element method. Comput Methods Appl Mech Eng 200(5-8):425–438

    Article  MATH  MathSciNet  Google Scholar 

  • Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems. Phys Rev 94(3):511–525

    Article  MATH  Google Scholar 

  • Bijl H, Carpenter MH, Vatsa VN, Kennedy CA (2002) Implicit time integration schemes for the unsteady compressible Navier-Stokes equations: Laminar flow. J Comput Phys 179(1):313–329

    Article  MATH  Google Scholar 

  • Borrvall T, Petersson J (2003) Topology optimization of fluids in stokes flow. Int J Numer Methods Fluids 41(1):77–107

    Article  MATH  MathSciNet  Google Scholar 

  • Brooks AN, Hughes TJ (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32(1-3):199–259

    Article  MATH  MathSciNet  Google Scholar 

  • Cao N, Chen S, Jin S, Martínez D (1997) Physical symmetry and lattice symmetry in the lattice Boltzmann method. Phys Rev E 55:R21–R24

    Article  Google Scholar 

  • Chen H (1998) Volumetric formulation of the lattice Boltzmann method for fluid dynamics: Basic concept. Phys Rev E 58:3955–3963

    Article  Google Scholar 

  • Codina R (1998) Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comput Methods Appl Mech Eng 156(1-4):185–210

    Article  MATH  MathSciNet  Google Scholar 

  • Codina R (2001) A stabilized finite element method for generalized stationary incompressible flows. Comput Methods Appl Mech Eng 190(2021):2681–2706

    Article  MATH  MathSciNet  Google Scholar 

  • Codina R (2002) Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Comput Methods Appl Mech Eng 191(39-40):4295–4321

    Article  MATH  MathSciNet  Google Scholar 

  • Daux C, Moes N, Dolbow J, Sukumark N, Belytschko T (2000) Arbitrary branched and intersecting cracks with the extended nite element method. Int J Numer Meth Engng 48:1741–1760

    Article  MATH  Google Scholar 

  • Dede E (2010) Multiphysics optimization, synthesis, and application of jet impingement target surfaces. In: Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2010 12th IEEE Intersociety Conference on, pp 1–7

  • van Dijk N, Langelaar M, van Keulen F (2012) Explicit level-set-based topology optimization using an exact heaviside function and consistent sensitivity analysis. Int J Numer Meth Engng 91(1):67–97

  • van Dijk N, Maute K, Langelaar M, van Keulen F (2013) Levelset methods for structural topology optimization A review. Struct Multidiscip Optim 48(3):437–472

  • Dolbow J, Harari I (2009) An efficient finite element method for embedded interface problems. Int J Numer Meth Engng 78:229–252

    Article  MATH  MathSciNet  Google Scholar 

  • Düster A, Demkowicz L, Rank E (2006) High-order finite elements applied to the discrete Boltzmann equation. Int J Numer Methods Eng 67(8):1094–1121

    Article  MATH  Google Scholar 

  • Duysinx P, Miegroet L, Jacobs T, Fleury C (2006) Generalized shape optimization using x-fem and level set methods. , In: IUTAM Symposium on Topological Design Optimization of Structures. Springer, Machines and Materials, pp 23–32

  • Evans B, Morgan K, Hassan O (2011) A discontinuous finite element solution of the Boltzmann kinetic equation in collisionless and BGK forms for macroscopic gas flows. Appl Math Model 35(3):996–1015

    Article  MATH  MathSciNet  Google Scholar 

  • Fries T, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3):253–304

    MATH  MathSciNet  Google Scholar 

  • Fries TP (2009) The intrinsic xfem for two-fluid flows. Int J Numer Meth Fluids 60(4):437–471

    Article  MATH  MathSciNet  Google Scholar 

  • Gersborg-Hansen A, Sigmund O, Haber RB (2005) Topology optimization of channel flow problems. Struct Multidiscip Optim 30(3):181–192

    Article  MATH  MathSciNet  Google Scholar 

  • Gersborg-Hansen A, Bendse MP, Sigmund O (2006) Topology optimization of heat conduction problems using the finite volume method. Struct Multidiscip Optim 31(4):251–259

    Article  MATH  MathSciNet  Google Scholar 

  • Gerstenberger A, Wall WA (2008) An extended finite element method/Lagrange multiplier based approach for fluid-structure interaction. Comput Methods Appl Mech Eng 197:1699–1714

    Article  MATH  MathSciNet  Google Scholar 

  • Grad H (1949) On the kinetic theory of rarefied gases. Commun Pur Appl Math 2(4):331–407

    Article  MATH  MathSciNet  Google Scholar 

  • Guest J, Prévost J, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238– 254

    Article  MATH  Google Scholar 

  • Guo X, Zhang W, Zhong W (2014) Explicit feature control in structural topology optimization via level set method. Comput Methods Appl Mech Eng 272:354–378

    Article  MATH  MathSciNet  Google Scholar 

  • Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193(3335):3523–3540

    Article  MATH  MathSciNet  Google Scholar 

  • Hauke G (2002) A simple subgrid scale stabilized method for the advection-diffusion-reaction equation. Comput Methods Appl Mechanics Eng 191(27–28):2925–2947

    Article  MATH  MathSciNet  Google Scholar 

  • Hughes TJR, Mallet M (1986) A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems. Comput Methods Appl Mechanics Eng 58(3):305–328

    Article  MATH  MathSciNet  Google Scholar 

  • Juntunen M, Stenberg R (2009) Nitsches method for general boundary conditions. Math Comput 78:1353–1374

    Article  MATH  MathSciNet  Google Scholar 

  • Kontoleontos EA, Papoutsis-Kiachagias EM, Zymaris AS, Papadimitriou DI, Giannakoglou KC (2013) Adjoint-based constrained topology optimization for viscous flows, including heat transfer. Eng Opt 45(8):941–961

    Article  MathSciNet  Google Scholar 

  • Kreisselmeier G, Steinhauser R (1979) Systematic control design by optimizing a vector performance index. , In: International Federation of Active Contrals Symposium on Computer Aided Design of Control Systems. Zurich, Switzerland

  • Kreissl S, Maute K (2011) Topology optimization for unsteady flow. Int J Numer Methods Eng 87:1229–1253

    MATH  MathSciNet  Google Scholar 

  • Kreissl S, Maute K (2012) Levelset based fluid topology optimization using the extended finite element method. Struct Multidiscip Optim 46(3):311–326

    Article  MATH  MathSciNet  Google Scholar 

  • Kreissl S, Pingen G, Evgrafov A, Maute K (2010) Topology optimization of flexible micro-fluidic devices. Struct Multidiscip Optim 42(4):495–516

  • Kreissl S, Pingen G, Maute K (2011) An explicit level set approach for generalized shape optimization of fluids with the lattice boltzmann method. Int J Numer Methods Fluids 65(5):496–519

    Article  MATH  Google Scholar 

  • Lang C, Makhija D, Doostan A,Maute K (2013) A simple and efficient preconditioning scheme for xfem with heaviside enrichments. http://arxiv.org/abs/1312.6092

  • Lee T, Lin CL (2001) A characteristic Galerkin method for discrete Boltzmann equation. J Comput Phys 171(1):336–356

    Article  MATH  MathSciNet  Google Scholar 

  • Li Y, LeBoeuf EJ, Basu PK (2004) Least-squares finite-element lattice Boltzmann method. Phys Rev E 69(065):701

    Google Scholar 

  • Li Y, LeBoeuf E, Basu P (2005) Least-squares finite-element scheme for the lattice Boltzmann method on an unstructured mesh. Phys Rev E 72(4)(046):711

    Google Scholar 

  • Luo Z, Tong L, Wang MY, Wang S (2007) Shape and topology optimization of compliant mechanisms using a parameterization level set method. J Comput Phys 227(1):680–705

    Article  MATH  MathSciNet  Google Scholar 

  • Makhija D, Maute K (2014) Numerical instabilities in level set topology optimization with the extended finite element method. Struct Multidiscip Optim 49(2):185–197

  • Makhija D, Pingen G, Yang R, Maute K (2012) Topology optimization of multi-component flows using a multi-relaxation time lattice Boltzmann method. Comput Fluids 67(0):104–114

    Article  MathSciNet  Google Scholar 

  • Makhija D, Pingen G, Maute K (2014) An immersed boundary method for fluids using the xfem and the hydrodynamic boltzmann transport equation. Comput Methods Appl Mech Eng 273:37–55

  • Matsumori T, Kondoh T, Kawamoto A, Nomura T (2013) Topology optimization for fluid-thermal interaction problems under constant input power. Struct Multidiscip Optim 47(4):571–581

    Article  MATH  Google Scholar 

  • Maute K, Kreissl S, Makhija D, Yang R (2011) Topology optimization of heat conduction in nano-composites. Shizuoka, Japan

    Google Scholar 

  • Mei R, Shyy W (1998) On the finite difference-based lattice Boltzmann method in curvilinear coordinates. J Comput Phys 143(2):426–448

    Article  MATH  MathSciNet  Google Scholar 

  • van Miegroet L, Duysinx P (2007) Stress concentration minimization of 2d filets using x-fem and level set description. Struct Multidiscip Optim 33(4-5):425–438

    Article  Google Scholar 

  • van Miegroet L, Moës N Fleury C, Duysinx P (2005) Generalized shape optimization based on the level set method. In: 6 th World Congress of Structural and Multidisciplinary Optimization

  • Min M, Lee T (2011) A spectral-element discontinuous Galerkin lattice Boltzmann method for nearly incompressible flows. J Comput Phys 230(1):245–259

    Article  MATH  MathSciNet  Google Scholar 

  • Nannelli F, Succi S (1992) The lattice Boltzmann equation on irregular lattices. J Stat Phys 68:401–407

    Article  MATH  MathSciNet  Google Scholar 

  • Okkels F, Gregersen M, Bruus H (2009) Topology optimization of fully nonlinear lab-on-a-chip systems. In: Proceedings of 8th World Congress on Structural and Multidisciplinary Optimization, June 1–5, 2009. Lisbon, Portugal

  • Othmer C (2006) CFD topology and shape optimization with adjoint methods. , In: VDI Fahrzeug- und Verkehrstechnik. Internationaler Kongress, Berechnung und Simulation im Fahrzeugbau, Würzburg, p 13

  • Othmer C, de Villiers E, Weller HG (2007) Implementation of a continuous adjoint for topology optimization of ducted flows. In: Proceedings of the 18th AIAA Computational Fluid Dynamics Conference Miami. AIAA, FL

  • Patil DV, Lakshmisha K (2009) Finite volume TVD formulation of lattice Boltzmann simulation on unstructured mesh. J Comput Phys 228(14):5262–5279

    Article  MATH  MathSciNet  Google Scholar 

  • Peng G, Xi H, Duncan C, Chou SH (1998) Lattice Boltzmann method on irregular meshes. Phys Rev E 58:R4124–R4127

    Article  Google Scholar 

  • Peng G, Xi H, Duncan C, Chou SH (1999) Finite volume scheme for the lattice Boltzmann method on unstructured meshes. Phys Rev E 59:4675–4682

    Article  Google Scholar 

  • Pingen G, Evgrafov A, Maute K (2009) Adjoint parameter sensitivity analysis for the hydrodynamic lattice Boltzmann method with applications to design optimization. Comput Fluids 38(4):910–923

    Article  MATH  MathSciNet  Google Scholar 

  • Pingen G, Waidmann M, Evgrafov A, Maute K (2010) A parametric level-set approach for topology optimization of flow domains. Struct Multidiscip Optim 41(1):117–131

    Article  MATH  MathSciNet  Google Scholar 

  • Shi X, Lin J, Yu Z (2003) Discontinuous Galerkin spectral element lattice Boltzmann method on triangular element. Int J Numer Methods Fluids 42(11):1249–1261

    Article  MATH  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches: A comparative review. Struct Multidiscip Optim 48(6):1031–1055

  • Stenberg R (1995) On some techniques for approximating boundary conditions in the finite element method. J Comput Appl Math 63(1-3):139–148

    Article  MATH  MathSciNet  Google Scholar 

  • Struchtrup H (2005) Macroscopic Transport Equations for Rarefied Gas Flows. Springer

  • Struchtrup H, Torrilhon M (2003) Regularization of Grad’s 13 moment equations: Derivation and linear analysis. Fluids 15:2668–2680

    Article  MathSciNet  Google Scholar 

  • Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573

    Article  MATH  MathSciNet  Google Scholar 

  • Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Methods Eng 58(9):1321–1346

    Article  MATH  Google Scholar 

  • Tölke J, Krafczyk M, Schulz M, Rank E (2000) Discretization of the Boltzmann equation in velocity space using a Galerkin approach. Comput Phys Commun 129(13):91–99

    Article  MATH  Google Scholar 

  • Tran AB, Yvonnet J, He QC, Toulemonde C, Sanahuja J (2011) A multiple level set approach to prevent numerical artefacts in complex microstructures with nearby inclusions within xfem. Int J Numer Methods Eng 85(11):1436–1459

    Article  MATH  Google Scholar 

  • Ubertini S, Succi S (2005) Recent advances of lattice Boltzmann techniques on unstructured grids. Progress in Computational Fluid Dynamics, an International Journal 5(1):85– 96

    Article  MathSciNet  Google Scholar 

  • Ubertini S, Bella G, Succi S (2003) Lattice Boltzmann method on unstructured grids: Further developments. Phys Rev E 68(016):701

    MathSciNet  Google Scholar 

  • Villanueva C, Maute K (2014) Density and level set-xfem schemes for topology optimization of 3-D structures. Comput Mech 54(1):133–150

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mechanics Eng 192(1-2):227–246

    Article  MATH  Google Scholar 

  • Wang S, Wang M (2006) Radial basis functions and level set method for structural topology optimization. Int J Numer Methods Eng 65(12):2060–2090

    Article  MATH  Google Scholar 

  • Wei P, Wang M, Xing X (2010) A study on X-FEM in continuum structural optimization using a level set model. Comput Aided Des 42(8):708–719

    Article  Google Scholar 

  • Xi H, Peng G, Chou SH (1999) Finite-volume lattice Boltzmann method. Phys Rev E 59:6202–6205

    Article  Google Scholar 

  • Yang J, Huang J (1995) Rarefied flow computations using nonlinear model Boltzmann equations. J Comput Phys 120(2):323–339

    Article  MATH  Google Scholar 

  • Yoon G (2009) Topology optimization for stationary fluid-structure interaction problems using a new monolithic formulation , In: Proceedings of 8th World Congress on Structural and Multidisciplinary Optimization. Lisbon, Portugal

  • Yu D, Mei R, Luo L, Shyy W (2003) Viscous flow computations with the method of lattice Boltzmann equation. Prog Aerosp Sci 39(5):329–367

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the National Science Foundation under grant EFRI-SEED 1038305 and CBET 1246854. The opinions and conclusions presented in this paper are those of the authors and do not necessarily reflect the views of the sponsoring organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Maute.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhija, D., Maute, K. Level set topology optimization of scalar transport problems. Struct Multidisc Optim 51, 267–285 (2015). https://doi.org/10.1007/s00158-014-1142-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-014-1142-7

Keywords

Navigation