Skip to main content

Advertisement

Log in

Topology optimization of non-Fourier heat conduction problems considering global thermal dissipation energy minimization

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In this paper, a topology optimization model is proposed for non-Fourier heat conduction design. In this model, the finite element discretization scheme and the Wilson-θ time discretization method are combined to analyze non-Fourier transient heat conduction that is represented by the Cattaneo-Vernotte equation with a relaxation term. Based on the solid isotropic material with penalization (SIMP) interpolation model, the mathematical statement of the proposed optimization design is formulated by integrating the transient objective function over the time interval that considers thermal dissipation energy minimization. The adjoint variable method for sensitivity analysis and the method of moving asymptotes (MMA) for solving the optimization problem are discussed as well. Numerical examples illustrate the validity and applicability of the proposed non-Fourier heat conduction topology optimization by comparison with transient Fourier heat conduction design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

c :

Specific heat capacity

C :

Heat capacity matrix

F :

Heat source vector

f(T(t), x):

The relevant thermal response

k :

Thermal conductivity

K :

Thermal conductance matrix

N :

Matrix of shape function

N e :

Total element number

q :

Heat flux

Q :

Heat source

t n :

Whole working time

T :

Temperature vector

\( \dot{\mathbf{T}} \) :

The first-order temporal derivatives vector

\( \ddot{\mathbf{T}} \) :

The second-order temporal derivatives vector

x e :

Design variable

x :

The vector of element design variables

v e :

The eth element volume

V 0 :

Total volume

η :

Lagrangian multiplier vector

ξ :

Target volume fraction for material B

Δt :

Time step

θ :

Wilson parameter

Ω:

Spatial domain

κ :

The coordinate variables

τ :

Relaxation index

ρ :

Material density

References

  • Alam MW, Bhattacharyya S, Souayeh B, Dey K, Hammami F, Rahimi-Gorji M, Biswas R (2020) CPU heat sink cooling by triangular shape micro-pin-fin: numerical study. Int Commun Heat Mass Transf 112:104455

    Article  Google Scholar 

  • Allaire G, Münch A, Periago F (2010) Long time behavior of a two-phase optimal design for the heat equation. SIAM J Control Optim 48:5333–5356

    Article  MathSciNet  MATH  Google Scholar 

  • Attetkov AV, Volkov IK, Tverskaya ES (2001) The optimum thickness of a cooled coated wall exposed to local pulse-periodic heating. J Eng Phys Thermophys 74:1467–1474

    Article  Google Scholar 

  • Bathe KJ, Wilson EL (1972) Stability and accuracy of direct integration methods. Earthq Eng Struct D 1(3):283–291

    Article  Google Scholar 

  • Bejan A (1997) Constructal-theory network of conducting path for cooling a heat generating volume. Int J Heat Mass Transf 40:799–816

    Article  MATH  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Multidiscipl Optim 1(4):193–202

    Article  MathSciNet  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Cattaneo C (1958) A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Comp Rend 247:431–433

    MATH  Google Scholar 

  • Chen JK, Tzou DY, Beraun JE (2005) Numerical investigation of ultrashort laser damage in semiconductors. Int J Heat Mass Transf 48(3–4):501–509

    MATH  Google Scholar 

  • Chen LG, You J, Feng HJ, Xie ZH (2019) Constructal optimization for “disc-point” heat conduction with nonuniform heat generating. Int J Heat Mass Transf 134:1191–1198

    Article  Google Scholar 

  • Ciegis R, Mirinavicius A (2011) On some finite difference schemes for solution of hyperbolic heat conduction problems. Cent Eur J Math 9(5):1164–1170

    Article  MathSciNet  MATH  Google Scholar 

  • Crank J, Nicolson P (1947) A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Proc Camb Phil Soc 43(1):50–67

    MathSciNet  MATH  Google Scholar 

  • Deldar S, Khoshvaght-Aliabadi M (2019) Analysis of flow and heat transfer of different miniature chambers with/and/without rectangular pin: numerical investigation with empirical validation. Appl Therm Eng 150:923–936

    Article  Google Scholar 

  • Dirker J, Meyer JP (2013) Topology optimization for an internal heat-conduction cooling scheme in a square domain for high heat flux applications. J Heat Transf-Trans ASME 135(11):111010

    Article  Google Scholar 

  • Fan QM, Lu WQ (2002) A new numerical method to simulate the non-Fourier heat conduction in a single-phase medium. Int J Heat Mass Transf 45(13):2815–2821

    Article  MATH  Google Scholar 

  • Fourier J (1955) Analytical theory of heat. Dover, New York

    MATH  Google Scholar 

  • Gao T, Zhang WH, Zhu JH, Xu YJ, Bassir DH (2008) Topology optimization of heat conduction problem involving design-dependent heat load effect. Finite Elem Anal Des 44(14):805–813

    Article  Google Scholar 

  • Gersborg-Hansen A, Bendsøe MP, Sigmund O (2006) Topology optimization of heat conduction problems using the finite volume method. Struct Multidiscip Optim 31(4):251–259

    Article  MathSciNet  MATH  Google Scholar 

  • Gladwell I, Thomas R (1980) Stability properties of the Newmark, Houbolt and Wilson θ methods. Int J Numer Anal Met 4(2):143–158

    Article  MATH  Google Scholar 

  • Guedes JM, Lubrano E, Rodrigues HC, Turteltaub S (2006) Hierarchical optimization of material and structure for thermal transient problems. IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials, Solid Mechanics and Its Applications 137:527–536

    Google Scholar 

  • Guo ZY, Hou QW (2010) Thermal wave based on the thermomass model. J Heat Transf 132(7):072403

    Article  Google Scholar 

  • Guo ZY, Cheng XG, Xia ZZ (2003) Least dissipation principle of heat transport potential capacity and its application in heat conduction optimization. Chin Sci Bull 48(4):406–410

    Article  Google Scholar 

  • Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically–a new moving morphable components based framework. J Appl Mech Trans ASME 81(8):081009

    Article  Google Scholar 

  • Guyer RA, Krumhansl JA (1966a) Solution of the linearized phonon Boltzmann equation. Phys Rev 148(2):766

    Article  Google Scholar 

  • Guyer RA, Krumhansl JA (1966b) Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals. Phys Rev 148(2):778

    Article  Google Scholar 

  • Hajmohammadi MR, Parsa H, Najafian J (2019) Proposing an optimal tree-like design of highly conductive material configuration with unequal branches for maximum cooling a heat generating piece. Int J Heat Mass Transf 142:118422

    Article  Google Scholar 

  • Hostos JCA, Fachinotti VD, Peralta I, Tourn BA (2019) Computational design of metadevices for heat flux manipulation considering the transient regime. Numer Heat Tranf A Appl 76(8):648–663

    Article  Google Scholar 

  • Huang X, Xie YM (2009) Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Comput Mech 43(3):393–401

    Article  MathSciNet  MATH  Google Scholar 

  • Ikonen TJ, Marck G, Sobester A, Keane AJ (2018) Topology optimization of conductive heat transfer problems using parametric L-systems. Struct Multidiscipl Optim 58(5):1899–1916

    Article  MathSciNet  Google Scholar 

  • Lazarov BS, Wang F, Sigmund O (2016) Length scale and manufacturability in density-based topology optimization. Arch Appl Mech 86(1–2):189–218

    Article  Google Scholar 

  • Li Q, Steven GP, Querin OM, Xie YM (1999) Shape and topology design for heat conduction by evolutionary structural optimization. Int J Heat Mass Transf 42(17):3361–3371

    Article  MATH  Google Scholar 

  • Li DY, Wu YY, Kim P, Shi L, Yang PD, Majumdar A (2003) Thermal conductivity of individual silicon nanowires. Appl Phys Lett 83(14):2934–2936

    Article  Google Scholar 

  • Liao S (1997) General boundary element method for non-linear heat transfer problems governed by hyperbolic heat conduction equation. Comput Mech 20(5):397–406

    Article  MATH  Google Scholar 

  • Long K, Wang X, Gu XG (2018) Multi-material topology optimization for the transient heat conduction problem using a sequential quadratic programming algorithm. Eng Optimiz 50(12):2091–2107

    Article  MathSciNet  Google Scholar 

  • Lopez-Molina JA, Rivera MJ, Trujillo M, Burdio F, Lequerica JL, Hornero F, Berjano EJ (2013) Assessment of hyperbolic heat transfer equation in theoretical modeling for radiofrequency heating techniques. Open Biomed Eng J 2(1):22–27

    Article  Google Scholar 

  • Manzari MT, Manzari MT (1998) A mixed approach to finite element analysis of hyperbolic heat conduction problems. Int J Numer Methods Heat Fluid Flow 8(1):83–96

    Article  MATH  Google Scholar 

  • Marchildon A, Soliman H (2019) Optimum dimensions of longitudinal rectangular fins and cylindrical pin fins with a prescribed tip temperature. Heat Transf Eng 40(11):914–923

    Article  Google Scholar 

  • Marck G, Nemer M, Harion JL, Russeil S, Bougeard D (2012) Topology optimization using the SIMP method for multiobjective conductive problems. Numer Heat Tranf B-Fundam 61(6):439–470

    Article  Google Scholar 

  • Munch A, Pedregal P, Periago F (2008) Relaxation of an optimal design problem for the heat equation. J Math Pures Appl 89(3):225–247

    Article  MathSciNet  MATH  Google Scholar 

  • Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div ASCE 85(3):67–94

    Article  Google Scholar 

  • Park J, Nguyen TH, Shah JJ, Sutradhar A (2019) Conceptual design of efficient heat conductors using multi-material topology optimization. Eng Optimiz 51(5):796–814

    Article  MathSciNet  Google Scholar 

  • Pathak S, Jain K, Kumar P, Wang X, Pant RP (2019) Improved thermal performance of annular fin-shell tube storage system using magnetic fluid. Appl Energy 239:1524–1535

    Article  Google Scholar 

  • Roetzel W, Putra N, Das SK (2003) Experiment and analysis for non-Fourier conduction in materials with non-homogeneous inner structure. Int J Therm Sci 42(6):541–552

    Article  Google Scholar 

  • Siemens ME, Li Q, Yang R, Nelson KA, Anderson EH, Murnane MM, Kapteyn HC (2010) Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft x-ray beams. Nat Mater 9(1):26–30

    Article  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75

    Article  Google Scholar 

  • Soares D (2018) An enhanced explicit technique for the solution of non-Fourier heat transfer problems. Adv Eng Softw 122:13–21

    Article  Google Scholar 

  • Sun HW, Zhang J (2003) A high-order compact boundary value method for solving one dimensional heat equations. Numer Methods Partial Differ Equ 19(6):846–857

    Article  MathSciNet  MATH  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes-a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Turteltaub S (2001) Optimal material properties for transient problems. Struct Multidiscipl Optim 22(2):157–166

    Article  MathSciNet  Google Scholar 

  • Tzou DY (1995) The generalized lagging response in small-scale and high-rate heating. Int J Heat Mass Transf 38(17):3231–3240

    Article  Google Scholar 

  • Vernotte P (1958) Les paradoxes de la theorie continue de Lequation de la Chaleur. Comp Rend 246:3154–3155

    MATH  Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1):227–246

    Article  MathSciNet  MATH  Google Scholar 

  • Wang MR, Yang N, Guo ZY (2011) Non-Fourier heat conductions in nanomaterials. J Appl Phys 110(6):064310

    Article  Google Scholar 

  • Wilson EL (1968) A computer program for the dynamic stress analysis of underground structures. Report UC SESM 68–1, University California, Berkeley

  • Wu SH, Zhang YC, Liu ST (2019) Topology optimization for minimizing the maximum temperature of transient heat conduction structure. Struct Multidiscipl Optim 60(1):69–82

    Article  MathSciNet  Google Scholar 

  • Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896

    Article  Google Scholar 

  • Yan S, Wang F, Sigmund O (2018) On the non-optimality of tree structures for heat conduction. Int J Heat Mass Transf 122:660–680

    Article  Google Scholar 

  • Yang ZB, Wang ZK, Tian SH, Chen XF (2019) Analysis and modelling of non-Fourier heat behavior using the wavelet finite element method. Mater 12(8):1337

    Article  Google Scholar 

  • Zhang YC, Liu ST (2008a) Design of conducting paths based on topology optimization. Heat Mass Transf 44(10):1217–1227

    Article  Google Scholar 

  • Zhang YC, Liu ST (2008b) The optimization model of the heat conduction structure. Prog Nat Sci 18(6):665–670

    Article  Google Scholar 

  • Zhang J, Zhao JJ (2001) Unconditionally stable finite difference scheme and iterative solution of 2D microscale heat transport equation. J Comput Phys 170(1):261–275

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang WJ, Chen JS, Zhu XF, Zhou JH, Xue DC. Lei X, Guo X (2017) Explicit three dimensional topology optimization via Moving Morphable Void (MMV) approach. Comput Methods Appl Mech Eng 322:590–614

  • Zheng JY, Wang J, Chen TT, Yu YS (2020) Solidification performance of heat exchanger with tree-shaped fins. Renew Energ 150:1098–1107

    Article  Google Scholar 

  • Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336

    Article  Google Scholar 

  • Zhuang CG, Xiong ZH (2014) A global heat compliance measure based topology optimization for the transient heat conduction problem. Numer Heat Tranf B-Fundam 65(5):445–471

    Article  Google Scholar 

  • Zhuang CG, Xiong ZH (2015) Temperature-constrained topology optimization of transient heat conduction problems. Numer Heat Tranf B-Fundam 68(4):366–385

    Article  Google Scholar 

  • Zhuang CG, Xiong ZH, Ding H (2013) Topology optimization of the transient heat conduction problem on a triangular mesh. Numer Heat Tranf B-Fundam 64(3):239–262

    Article  Google Scholar 

Download references

Replication of results

All simulations are performed using an in-house MATLAB implementation. All the datasets generated in this work and the Matlab codes are available upon reasonable request to the corresponding author.

Funding

This work is supported by the Natural Science Foundation of China (Grant 51705268), Shandong Provincial Natural Science Foundation, China (Grant ZR2016EEB20) and China Postdoctoral Science Foundation Funded Project (Grant 2017M612191). The authors are thankful for Professor Krister Svanberg for the MMA program made freely available for research purposes and the anonymous reviewers for their helpful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxin Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Shikui Chen

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The sensitivity analysis of the transient Fourier heat conduction problem is shown in this Appendix. For the two-dimensional (2D) temperature field T(t), the finite element model of the transient heat conduction problem based on Fourier’s law, given as

$$ \mathbf{C}\dot{\mathbf{T}}(t)+\mathbf{KT}(t)=\mathbf{F}(t)\kern2em t\in \left[0,{t}_n\right] $$
(33)

Here, we assume that the heat source and the initial temperature conditions are independent of the design variable, defined as

$$ \frac{\partial \mathbf{F}(t)}{\partial {x}_e}=0,\kern1em \frac{\partial \mathbf{T}(0)}{\partial {x}_e}=0\kern1em \mathrm{and}\kern1em \frac{\partial \dot{\mathbf{T}}(0)}{\partial {x}_e}=0 $$
(34)

For thermal dissipation energy problem

$$ f\left(\dot{\mathbf{T}}(t),\mathbf{T}(t),\mathbf{x}\right)=\frac{1}{2}{\mathbf{T}}^T\mathbf{KT} $$
(35)

According to the Lagrangian multiplier method, the augmented term of the equilibrium equation is expressed as

$$ \varphi ={\int}_0^{t_n}\frac{1}{2}{\mathbf{T}}^T\mathbf{KT} dt+{\int}_0^{t_n}{\boldsymbol{\upeta}}^T\left(\mathbf{C}\dot{\mathbf{T}}+\mathbf{KT}-\mathbf{F}\right) dt $$
(36)

The derivative of the function φ with respect to the design variable xe is obtained as

$$ \frac{\partial \varphi }{\partial {x}_e}={\int}_0^{t_n}\left(\frac{1}{2}{\mathbf{T}}^T\frac{\partial \mathbf{K}}{\partial {x}_e}\mathbf{T}+{\mathbf{T}}^T\mathbf{K}\frac{\partial \mathbf{T}}{\partial {x}_e}\right) dt+{\int}_0^{t_n}\left[{\boldsymbol{\upeta}}^T\left(\frac{\partial \mathbf{C}}{\partial {x}_e}\dot{\mathbf{T}}+\mathbf{C}\frac{\partial \dot{\mathbf{T}}}{\partial {x}_e}+\frac{\partial \mathbf{K}}{\partial {x}_e}\mathbf{T}+\mathbf{K}\frac{\partial \mathbf{T}}{\partial {x}_e}\right)\right] dt $$
(37)

Given that \( {\left.\boldsymbol{\upeta} \right|}_{t_n}=0 \), the integral terms \( {\int}_0^{t_n}{\boldsymbol{\upeta}}^T\mathbf{C}\frac{\partial \dot{\mathbf{T}}}{\partial {x}_e} dt \) are solved partial integration, transformed as

$$ {\int}_0^{t_n}{\boldsymbol{\upeta}}^T\mathbf{C}\frac{\partial \dot{\mathbf{T}}}{\partial {x}_e} dt=-{\int}_0^{t_n}{\dot{\boldsymbol{\upeta}}}^T\mathbf{C}\frac{\partial \mathbf{T}}{\partial {x}_e} dt $$
(38)

Then, the derivative of the function φ is reformulated by

$$ \frac{\partial \varphi }{\partial {x}_e}={\int}_0^{t_n}\left({\mathbf{T}}^T\mathbf{K}-{\dot{\boldsymbol{\upeta}}}^T\mathbf{C}+{\boldsymbol{\upeta}}^T\mathbf{K}\right)\frac{\partial \mathbf{T}}{\partial {x}_e} dt+{\int}_0^{t_n}\left({\boldsymbol{\upeta}}^T\left(\frac{\partial \mathbf{C}}{\partial {x}_e}\dot{\mathbf{T}}+\frac{\partial \mathbf{K}}{\partial {x}_e}\mathbf{T}\right)+\frac{1}{2}{\mathbf{T}}^T\frac{\partial \mathbf{K}}{\partial {x}_e}\mathbf{T}\right) dt $$
(39)

To eliminate the second term of its right-hand side \( \frac{\partial \mathbf{T}}{\partial {x}_e} \)and introduce the transformation u(s) = η(tn − s), the Lagrangian multiplier η can be solved through the adjoint equation

$$ \mathbf{C}\dot{\mathbf{u}}+\mathbf{Ku}=-\mathbf{KT}\kern1.25em {\left.\mathbf{u}\right|}_0=0;{\left.\dot{\mathbf{u}}\right|}_0=0 $$
(40)

Then, the derivative \( \frac{\partial \varphi }{\partial {x}_e} \) can be expressed as

$$ \frac{\partial \varphi }{\partial {x}_e}={\int}_0^{t_n}\left({\boldsymbol{\upeta}}^T\frac{\partial \mathbf{C}}{\partial {x}_e}\dot{\mathbf{T}}+{\boldsymbol{\upeta}}^T\frac{\partial \mathbf{K}}{\partial {x}_e}\mathbf{T}+\frac{1}{2}{\mathbf{T}}^T\frac{\partial \mathbf{K}}{\partial {x}_e}\mathbf{T}\right) dt $$
(41)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Zhang, H., Wang, F. et al. Topology optimization of non-Fourier heat conduction problems considering global thermal dissipation energy minimization. Struct Multidisc Optim 64, 1385–1399 (2021). https://doi.org/10.1007/s00158-021-02924-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-021-02924-0

Keywords

Navigation