Skip to main content
Log in

A multi-objective differential evolution approach based on ε-elimination uniform-diversity for mechanism design

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In this paper, a new multi-objective uniform-diversity differential evolution (MUDE) algorithm is proposed and used for Pareto optimum design of mechanisms. The proposed algorithm uses a diversity preserving mechanism called the ε-elimination algorithm to improve the population diversity among the obtained Pareto front. The proposed algorithm is firstly tested on some constrained and unconstrained benchmarks proposed for the special session and competition on multi-objective optimizers held under IEEE CEC 2009. The inverted generational distance (IGD) measure is used to assess the performance of the algorithm. Secondly, the proposed algorithm has been used for multi-objective optimization of two different combinatorial case studies. The first case contains a two-degree of freedom leg mechanism with springs. Three conflicting objective functions that have been considered for Pareto optimization are namely, leg size, vertical actuating force, and the peak crank torque. The second case is a two-finger robot gripper mechanism with two conflicting objectives which are the difference between the maximum and minimum gripping force and the transmission ratio of actuated and experienced gripper forces. Comparisons of obtained Pareto fronts using the method of this work with those obtained in other references show significant improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akbari R, Ziarati K (2012) Multi-objective bee swarm optimization. Int J Innov Comput I 8(1-B):715–726

    Google Scholar 

  • Alexander RM (1990) Three Uses for Springs in Legged Locomotion. The International Journal of Robotic Research 9(2):53–61

    Article  Google Scholar 

  • Azarm S, Tahmasebi F (1996) multiobjective optimal design of a simplified P4R mechanism. J Eng Optim 27(2):139–153

    Article  Google Scholar 

  • Belforte G (1985) Organi di Presa per Robot, Notiziario Tecnico AMMA, Torino. 128–136, 1985

  • Bouhaya L, Baverel O, Caron JF (2014) Optimization of gridshell bar orientation using a simplified genetic approach. J Struct Multidiscip Optim. doi:10.1007/s00158-014-1088-9

    Google Scholar 

  • Cabrera JA, Nadal F, Munoz JP, Simon A (2007) Multi-objective constrained optimal synthesis of planar mechanisms using a new evolutionary algorithm. Mech Mach Theory 42(7):791–806

    Article  MathSciNet  MATH  Google Scholar 

  • Ceccarelli M, Cuadrado J, Dopico D (2002) An optimum synthesis for gripping mechanisms by using natural coordinates. Proc Inst Mech Eng C J Mech Eng Sci 216(6):643–653

    Article  Google Scholar 

  • Chen CM, Chen Y, Zhang Q (2009) Enhancing MOEA/D with guided mutation and priority update for multi-objective optimization. In: 2009 I.E. Congress on Evolutionary Computation, 18–21 May, Trondheim, Norway, 209–216

  • Cuadrado J, Naya MA, Ceccarelli M, Carbone G (2002) An optimum design procedure for two-finger grippers: a case of study. Electron J Comput Kinematics 15403(1):2002

    Google Scholar 

  • Cutkoski MR (1989) On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Trans Robot Autom 5(3):269–279

    Article  Google Scholar 

  • Datta R, Deb K (2011) Multi-objective design and analysis of robot gripper configurations using an evolutionary-classical approach, 13th Annual Conference on Genetic and Evolutionary Computation, Dublin, Ireland, pp. 1843–1850, 2011

  • Deb K, Tiwari S (2005) Multi-objective optimization of a leg mechanism using genetic algorithm, Eng Optim 38(4)

  • Deb K, Mohan M, Mishra S (2003) Towards a quick computation of well-spread Pareto optimal solutions, second evolutionary multi-criterion optimization (EMO-03), Springr. LNCS 2632:222–236

    Google Scholar 

  • Deshmukh A, Amarnath C (2006) Robot leg mechanisms. B. Tech. Seminar Report, Roll no. 03d10028

  • Dhandapani S, Ogot M (1994) Modeling of a leg system to illustrate the feasibility of energy recovery in walking machines, Advances in design automation, DE-Vol. 69–2, ASME Pub., pp. 429–436, 1994

  • EL-Kribi B, Houidi A, Affi Z, Romdhane L (2013) Application of multi-objective genetic algorithms to the mechatronic design of a four bar system with continuous and discrete variables. Mech Mach Theory 61:68–83

    Article  Google Scholar 

  • Funabashi H, Ogawa K, Gotoh Y, Kojima K (1985) Synthesis of leg-mechanisms of biped walking machines (part i, synthesis of ankle-path-generator). Bull JSME 27(237):537–543

    Article  Google Scholar 

  • Gao S, Zeng S, Xiao B, Zhang L, Shi Y, Tian X, Yang Y, Long H, Yang X, Yu D, Yan Z. (2009) An orthogonal multi-objective evolutionary algorithm with lower-dimensional crossover. In: 2009 I.E. Congress on Evolutionary Computation, 18–21 May, Trondheim, Norway, 1959–1964

  • Hirose S (1984) A study of design and control of a quadruped walking vehicle. Int J Robotic Res 3(2):113–133

    Article  Google Scholar 

  • Huang VL, Zhao SZ, Mallipeddi R, Suganthan PN (2009) Multi-objective optimization using self-adaptive differential evolution algorithm. In: 2009 I.E. Congress on Evolutionary Computation, 18–21 May, Trondheim, Norway, 190–194

  • Jamali A, Nariman-Zadeh N, Atashkari K (2008) Multi-objective Uniform diversity Genetic Algorithm (MUGA). In: Witold K (ed) Advanced in evolutionary algorithms. IN-TECH, Vienna

    Google Scholar 

  • Jamali A, Hajiloo A, Nariman-zadeh N (2010) Reliability-based robust Pareto design of linear state feedback controllers using a multi-objective uniform-diversity genetic algorithm (MUGA). Expert Syst Appl 37(1):401–413

    Article  Google Scholar 

  • Kukkonen S, Lampinen J (2009) Performance assessment of generalized differential evolution with a given set of constrained multi-objective test problems. In: 2009 I.E. Congress on Evolutionary Computation, 18–21 May, Trondheim, Norway, 1943–1950

  • Kuroi K, Ishihara H (2006) A 4-legged locomotion robot for heavy load transportation. ISARC 2006

  • Lanni C, Ceccarelli M (2009) An optimization problem algorithm for kinematic design of mechanisms for two-finger grippers. Open Mech Eng J 3:49–62

    Article  Google Scholar 

  • Liang C, Ceccarelliand M, Takeda Y (2008) Operation analysis of a One-DOF pantograph leg mechanisms. Proceedings of the RAAD 2008 17th International Workshop on Robotics in Alpe-Adria-Danube Region September 15–17, 2008, Ancona, Italy

  • Liang C, Ceccarelli M, Takeda Y (2012) Operation analysis of a Chebyshev-Pantograph leg mechanism for a single DOF biped robot. Front Mech Eng 7(4):357–370

    Article  Google Scholar 

  • Liu H, Li X (2009) The multi-objective evolutionary algorithm based on determined weight and sub- regional search. In: 2009 I.E. Congress on Evolutionary Computation, 18–21 May, Trondheim, Norway, 1928–1934

  • Liu M, Zou X, Chen Y, Wu Z. (2009) Performance assessment of DMOEA-DD with CEC 2009 MOEA competition test instances. In: 2009 I.E. Congress on Evolutionary Computation, 18–21 May, Trondheim, Norway, 2913–2918

  • Nariman-Zadeh N, Felezi M, Jamali A, Ganji M (2009) Pareto optimal synthesis of four-bar mechanisms for path generation. Mech Mach Theory 44(1):180–191

    Article  MATH  Google Scholar 

  • Nariman-Zadeh N, Salehpour M, Jamali A, Haghgoo E (2010) Pareto optimization of a five-degree of freedom vehicle vibration model using a multi-objective uniform-diversity genetic algorithm (MUGA). Eng Appl Artif Intel 23(4):543–551

    Article  Google Scholar 

  • Osyczka A (2002) Evolutionary algorithms for single and multi-criteria design optimization. Physica-Verlag, Heidelberg

    Google Scholar 

  • Ottaviano E, Lanni C, Ceccarelli M (2004) Numerical and experimental analysis of a pantograph-leg with a fully-rotative actuating mechanism. Proceedings of the 11th World Congress in Mechanism and Machine Science April 1–4, 2004, Tianjin, China

  • Pham DT, Heginbotham WB (1986) Robot grippers. IFS Ltd, London

    Google Scholar 

  • Potter RD (1985) In: Nof SY (ed) End-of-arm tooling, handbook of industrial robotics. Wiley, New York, pp 775–787

    Google Scholar 

  • Qu BY, Suganthan PN (2009) Multi-objective evolutionary programming without non-domination sorting is up to twenty times faster. In: 2009 I.E. Congress on Evolutionary Computation, 18–21 May, Trondheim, Norway, 2934–2939

  • Shieh WB, Azaram S, Tsai LW, Tits AL (1994) Optimization based design of a leg mechanism via combined mechanism and structural analysis. Advances in design automation, DE-Vol. 69–1. ASME Pub., 199–209, 1994

  • Shieh WB, Azaram S, Tsai LW, Tits AL (1996) Multi-objective optimization of a leg mechanism with various spring configurations for force reduction. J Mech Des 118:179–185

    Article  Google Scholar 

  • Shin E, Streit D (1993) An energy efficient quadruped with two-stage equilibrator. ASME J Mech Des 115(1):156–163

    Article  Google Scholar 

  • Shuo X, Ji Z, Pham DT, Yu F (2011) Binary bees algorithm – bioinspiration from the foraging mechanism of honeybees to optimize a multiobjective multidimensional assignment problem. J Eng Optim 43(11):1141–1159

    Article  Google Scholar 

  • Sindhya K, Sinha A, Deb K, Miettinen K (2009) Local search based evolutionary multi-objective optimization algorithm for constrained and unconstrained problems. In: 2009 I.E. Congress on Evolutionary Computation, 18–21 May, Trondheim, Norway, 2919–2926

  • Storn R, Price K (1997) Differential evolution: a simple and efficient heuristic scheme for global optimization over continuous spaces. J Global Optim 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  • Tavolieri C, Ottaviano E, Ceccarelli M, Nardelli A (2007) A design of a new leg-wheel walking robot. Proceedings of the 15th Mediterranean conference on Control & Automation, July 27–29,2007, Athens-Greece

  • Taylor CL, Schwarz MD (1955) The anatomy and mechanics of the human hand. Artif Limbs 2:22–35

    Google Scholar 

  • Tiwari S, Fadel G, Koch P, Deb K (2009) Performance assessment of the hybrid archive-based micro genetic algorithm on the CEC09 test problems. In: 2009 I.E. Congress on Evolutionary Computation, 18–21 May, Trondheim, Norway, 1935–1942

  • Tseng LY, Chen C (2009) Multiple trajectory search for unconstrained/constrained multi-objective optimization. In: 2009 I.E. Congress on Evolutionary Computation, 18–21 May, Trondheim, Norway, 1951–1958

  • Tusar T, Filipic B (2007) Differential evolution versus genetic algorithms in multiobjective optimization. Springer-Verlag Berlin Heidelberg., LNCS 4403, pp. 257–271, 2007

  • Venkata Rao R, Patel V (2013) A multi-objective improved teaching-learning based optimization algorithm for unconstrained and constrained optimization problems. International Journal of Industrial Engineering Computations

  • Wang Y, Dang C, Li H, Han L, Wei J (2009) A clustering multi-objective evolutionary algorithm based on orthogonal and uniform design. In: 2009 I.E. Congress on Evolutionary Computation, 18–21 May, Trondheim, Norway, 2927–2933

  • Williams RP, Tsai LW, Azaram S (1991) Design of a crank-and-rocker driven pantograph: A leg mechanism for the university of Marylands 1991 walking robot. In Proceeding of 2nd National Conference on Applied Mechanics and Robotics, Volume 1, No. VIB.2, Cincinnati, OH

  • Zamuda A, Brest J, Boskovic B, Zumer V (2009) Differential evolution with self adaptation and local search for constrained multi-objective optimization. In: 2009 I.E. Congress on Evolutionary Computation, 18–21 May, Trondheim, Norway, 192–202

  • Zhang Q, Zhou A, Zhao S, Suganthan PN, Liu W, Tiwari S (2009) Multi-objective optimization test instances for the congress on evolutionary computation (CEC 2009) special session and competition. Working Report CES-887.University of Essex, UK

  • Zhang Q, Liu W, Li H (2009) The performance of a new version of MOEA/D on CEC09 unconstrained mop test instances. In: 2009 I.E. Congress on Evolutionary Computation, 18–21 May, Trondheim, Norway, 203–208

Download references

Acknowledgments

We would like to thank Professor Nader Nariman-zadeh for helping us in the process of selection and editing. We also would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jamali.

Appendixes

Appendixes

1.1 Appendix 1

1.1.1 A. robot leg constraints

$$ {g}_1(x)\equiv 2{X}_{J_1}-{s}_h\ge 0 $$
(8)
$$ {g}_2(x)\equiv \frac{Y_J\Big|{}_{\alpha =\pi }-{Y}_J{\Big|_{\alpha =}}_0}{s_h}-{H}_{C2}\ge 0 $$
(9)
$$ {g}_3(x)\equiv 2{ \sin}^{-1}\left(\frac{x_2-{x}_1}{2{x}_3}\right)-{H}_{C3}\ge 0 $$
(10)
$$ {g}_4(x)\equiv -2{ \sin}^{-1}\left(\frac{x_2+{x}_1}{2{x}_3}\right)+{H}_{C4}\ge 0 $$
(11)
$$ {g}_5(x)\equiv { \cos}^{-1}\left(\frac{2{\left({x}_4+{x}_5\right)}^2-{l^2}_{\min }}{2{\left({x}_4+{x}_5\right)}^2}\right)-{H}_{C5}\ge 0 $$
(12)
$$ {g}_6(x)\equiv -{ \cos}^{-1}\left(\frac{2{\left({x}_4+{x}_5\right)}^2-{l^2}_{\max }}{2{\left({x}_4+{x}_5\right)}^2}\right)+{H}_{C6}\ge 0 $$
(13)
$$ {g}_7(x)\equiv {\theta}_5-{H}_{FC1}\ge 0,\forall \alpha \in {R}_p $$
(14)
$$ {g}_8(x)\equiv -\frac{d^2{Y}_J}{d{\alpha}^2}\ge 0, over{J}_1{J}_2{J}_3 $$
(15)
$$ {g}_9(x)\equiv \frac{ \min \left({l}_1\right)}{l_{01}}-{H}_{SC1}\ge 0 $$
(16)
$$ {g}_{10}(x)\equiv -\frac{ \max \left({l}_1\right)}{l_{01}}+{H}_{SC2}\ge 0 $$
(17)
$$ {g}_{11}(x)\equiv \frac{ \min \left({l}_2\right)}{l_{02}}-{H}_{SC3}\ge 0 $$
(18)
$$ {g}_{12}(x)\equiv -\frac{ \max \left({l}_2\right)}{l_{02}}+{H}_{SC4}\ge 0 $$
(19)
$$ {g}_{13}(x)\equiv -{s}_2+ \min {Y}_J\ge 0 $$
(20)

In which,

$$ {l}^2={\left({X}_J-{X}_E\right)}^2+{\left({Y}_J-{Y}_E\right)}^2. $$
(21)
$$ {\theta}_5={ \cos}^{-1}\left(\frac{X_E}{U}\right)-{ \cos}^{-1}\left(\frac{U}{2{x}_4}\right), $$
(22)
$$ {U}^2={X^2}_E+{Y^2}_E+{Y^2}_H-2{Y}_E{Y}_H. $$
(23)
$$ {l^2}_1={X^2}_E+{\left({Y}_E-{s}_1\right)}^2 $$
(24)
$$ \min \left({l}_2\right)={s}_2-\left({Y}_H+\frac{s_v}{2\left(1+\frac{x_5}{x_4}\right)}\right), $$
(25)
$$ \max \left({l}_2\right)={s}_2-\left({Y}_H-\frac{s_v}{2\left(1+\frac{x_5}{x_4}\right)}\right). $$
(26)

Where l min and l max are the minimum and maximum value of link EJ. In addition in the above equations, it is assumed that YH is at its mid-range position. The constant parameters of the constraints are as follows, HSC1 = 1, HSC2 = 1.3, HSC3 = 1, HSC4 = 1.3, HSC5 = −0.3, HSC6 = 0.1, HSC7 = 0.1, HSC8 = 0.6.

1.2 Appendix 2

1.2.1 B.1. robot gripper geometric equations

$$ g=\sqrt{{\left(l-z\right)}^2+{e}^2} $$
(27)
$$ \alpha = \arccos \left(\frac{a^2+{g}^2-{b}^2}{2.a.g}\right)+\varphi $$
(28)
$$ \beta = \arccos \left(\frac{b^2+{g}^2-{a}^2}{2.b.g}\right)-\varphi $$
(29)
$$ \varphi = \arctan \left(\frac{e}{l-z}\right) $$
(30)
$$ {a}^2={b}^2+{g}^2-2bg \cos \left(\beta +\varphi \right) $$
(31)
$$ {b}^2={a}^2+{g}^2-2 ag \cos \left(\alpha -\phi \right) $$
(32)

1.2.2 B.2. robot gripper force equations

$$ R.b. \sin \left(\alpha +\beta \right)={F}_k.c $$
(33)
$$ R=\frac{P}{2. \cos \left(\alpha \right)} $$
(34)
$$ {F}_k=\frac{P.b. \sin \left(\alpha +\beta \right)}{2.c. \cos \left(\alpha \right)} $$
(35)

where P is the actuating force, R is the reaction force on link a, and F k is the gripping force which is experienced at the gripper ends.

1.2.3 B.3. robot gripper constraints

$$ {g}_1(x)={Y}_{\min }-y\left(x,{Z}_{\max}\right)\ge 0 $$
(36)
$$ {g}_2(x)=y\left(x,{Z}_{\max}\right)\ge 0 $$
(37)
$$ {g}_3(x)=y\left(x,0\right)-{Y}_{\max}\ge 0 $$
(38)
$$ {g}_4(x)={Y}_G-y\left(x,0\right)\ge 0 $$
(39)
$$ {g}_5(x)={\left(a+b\right)}^2-{l}^2-{e}^2\ge 0 $$
(40)
$$ {g}_6(x)={\left(l-{Z}_{\max}\right)}^2+{\left(a-e\right)}^2-{b}^2\ge 0 $$
(41)
$$ {g}_7(x)=l-{Z}_{\max}\ge 0 $$
(42)
$$ {g}_8(x)= \min {F}_k\left(x,z\right)-FG\ge 0 $$
(43)

where y(x, z) = 2. [e + f + c. sin(δ + β)] is the displacement of gripper ends. Ymin and Ymax are maximum and minimum dimensions of gripping object. YG is the maximum range of gripper ends displacement and FG is the assumed minimal gripping force. More description of constraints could be found in (Osyczka 2002; Datta and Deb 2011).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholaminezhad, I., Jamali, A. A multi-objective differential evolution approach based on ε-elimination uniform-diversity for mechanism design. Struct Multidisc Optim 52, 861–877 (2015). https://doi.org/10.1007/s00158-015-1275-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-015-1275-3

Keywords

Navigation