Skip to main content
Log in

Random field modeling with insufficient field data for probability analysis and design

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Often engineered systems entail randomness as a function of spatial (or temporal) variables. The random field can be found in the form of geometry, material property, and/or loading in engineering products and processes. In some applications, consideration of the random field is a key to accurately predict variability in system performances. However, existing methods for random field modeling are limited for practical use because they require sufficient field data. This paper thus proposes a new random field modeling method using a Bayesian Copula that facilitates the random field modeling with insufficient field data and applies this method for engineering probability analysis and robust design optimization. The proposed method is composed of three key ideas: (i) determining the marginal distribution of random field realizations at each measurement location, (ii) determining optimal Copulas to model statistical dependence of the field realizations at different measurement locations, and (iii) modeling a joint probability density function of the random field. A mathematical problem was first employed for the purpose of demonstrating the accuracy of the random field modeling with insufficient field data. The second case study deals with the assembly process of a two-door refrigerator that challenges predicting the door assembly tolerance and minimizing the tolerance by designing the random field and parameter variables in the assembly process with insufficient random field data. It is concluded that the proposed random field modeling can be used to successfully conduct the probability analysis and robust design optimization with insufficient random field data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

Θ :

random field

μ ν :

mean and variation of the random field

ϕ :

signature of the random field

Σ :

covariance matrix

Δ :

distribution parameter vector

d :

design vector of random parameter variables

γ :

design vector of random field variables

α:

coefficient of the random field signature

λ :

eigenvalue of the covariance matrix

τ :

Kendall’s tau

C c :

cumulative distribution function and probability density function of the Copula

D :

bivariate data

F f :

cumulative distribution function and probability density function

M :

number of random fields

m n :

number of random field data and number of measurement locations

Q :

number of test Copulas

V :

random field variable

x :

measurement location

MD :

number of random field design variables

ND :

number of design variables

NC :

number of probabilistic constraints

NP :

number of random parameters

References

  • Basudhar A, Missoum S (2009) A sampling-based approach for probabilistic design with random fields. Comput Methods Appl Mech Eng 198(47–48):3647–3655

    Article  MATH  Google Scholar 

  • Berg, BA (2004) “Markov Chain Monte Carlo Simulations and Their Statistical Analysis”, World Scientific Publishing Co. Pte. Ltd. ISBN, 981-238-935-0

  • Berkooz, G, Holmes, P, and Lumley, JL (1996) “Turbulence, Coherent Structuress, Dynamical Systems and Symmetry.” Cambridge University Press: Cambridge Monographs on Mechanics

  • Bhushan RK, Kumar S, Das S (2012) GA approach for optimization of surface roughness parameters in machining of Al alloy SiC particle composite. J Mater Eng Perform 21(8):1676–1686

    Article  Google Scholar 

  • Boone EL, Ye K, Smith EP (2005) Assessment of two approximation methods for computing posterior model probabilities. Comput Stat Data Anal 48(2):221–234

    Article  MATH  MathSciNet  Google Scholar 

  • Chen X, Fan Y (2005) Pseudo-likelihood ratio tests for semiparametric multivariate copula model selection. La Rev Can Stat 33(3):389–414

    Article  MATH  MathSciNet  Google Scholar 

  • Chen S, Chen W, Lee S (2010) Level Set based robust shape and topology optimization under random field uncertainties. Struct Multidiscip Optim 41(4):507–524

    Article  MATH  MathSciNet  Google Scholar 

  • Choi SK, Canfield RA, Grandhi RV (2006) Estimation of structural reliability for gaussian random fields. Struct Infrastruct Eng 2:161–173

    Article  Google Scholar 

  • Der Kiureghian A, Ke JB (1988) The stochastic finite element method in structural reliability. Probab Eng Mech 3(2):83–91

    Article  Google Scholar 

  • Fermanian JD (2005) Goodness-of-Fit tests for copulas. J Multivar Anal 95:119–152

    Article  MATH  MathSciNet  Google Scholar 

  • Fukunaga K (1990) Introduction to statistical recognition. Academic, NewYork

    MATH  Google Scholar 

  • Guan X, Giffin A, Jha R, Liu Y (2012) Maximum relative entropy-based probabilistic inference in fatigue crack damage prognostics. Probab Eng Mech 29:157–166

    Article  Google Scholar 

  • Haran, M (2012) “Gaussian random field models for spatial data”, Markov Chain Monte Carlo Handbook, CRC Press

  • Hu C, Youn BD (2009) Adaptive-sparse polynomial chaos expansion for reliability analysis and design of complex engineering systems. Struct Multidiscip Optim 43(3):419–442

    Article  MathSciNet  Google Scholar 

  • Huang B, Du X (2006) Uncertainty analysis by dimension reduction integration and saddlepoint approximations. J Mech Des 128:26–33

    Article  Google Scholar 

  • Huard D, Evin G, Favre AC (2006) Bayesian copula selection. Comput Stat Data Anal 51(2):809–822

    Article  MATH  MathSciNet  Google Scholar 

  • Jaynes ET, Bretthorst GL (2003) Probability theory: the logic of science. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):79–86

    Article  MATH  MathSciNet  Google Scholar 

  • Lee SH, Chen W (2009) A comparative study of uncertainty propagation methods for black-box type problems. Struct Multidiscip Optim 37(3):239–253

    Article  MathSciNet  Google Scholar 

  • Li C, Der Kiureghian A (1993) Optimal discretization of random fields. J Eng Mech 119(6):1136–1154

    Article  Google Scholar 

  • Liu WK, Belytschko T, Mani A (1986) Random field finite elements. Int J Numer Methods Eng 23(10):1831–1845

    Article  MATH  MathSciNet  Google Scholar 

  • Missoum S (2008) Probabilistic optimal design in the presence of random fields. Struct Multidiscip Optim 35:523–530

    Article  MATH  MathSciNet  Google Scholar 

  • Orfanidis SJ (1996) Introduction to signal processing. Prentice-Hall, Englewood

    Google Scholar 

  • Panchenko V (2005) Goodness-of-fit test for copulas. Phys A: Stat Mech Appl 355(1):176–182

    Article  MathSciNet  Google Scholar 

  • Rabitz H, Alis OF (1999) General foundations of high-dimensional model representations. J Math Chem 25:197–233

    Article  MATH  MathSciNet  Google Scholar 

  • Rabitz H, Alis OF, Shorter J, Shim K (1999) Efficient input–output model representations. Comput Phys Commun 117:11–20

    Article  MATH  Google Scholar 

  • Rajaee M, Karlsson SKF, Sirorich L (1994) Low-dimensional description of free-shear-flow coherent structures and their dynamical behavior. J Fluid Mech 258:1–29

    Article  MATH  Google Scholar 

  • Roser BN (1999) An introduction to copulas. Springer, New York

    Google Scholar 

  • Sklar A (1959) Fonctions de répartition à n dimensions et leurs marges. Publ Inst Stat’Univer Paris 8:229–231

    MathSciNet  Google Scholar 

  • Sudret, B and Der Kiureghian A (2000) “Stochastic Finite Element Methods and Reliability: A State-Of-The-Art Report,” Technical Report UCB/SEMM-2000/08, Department of Civil & Environmental Engineering, University of California, Berkeley, CA

  • Tamura Y, Suganuma S, Kikuchi H, Hibi K (1999) Proper orthogonal decomposition of random wind pressure field. J Fluids Struct 13:1069–1095

    Article  Google Scholar 

  • Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  • Vanmarcke EH, Grigoriu M (1983) Stochastic finite element analysis of simple beams. J Eng Mech, ASCE 109(5):1203–1214

    Article  Google Scholar 

  • Wang C, Blei DM (2013) Variational inference in nonconjugate models. J Mach Learn Res 14(1):1005–1031

    MATH  MathSciNet  Google Scholar 

  • Wang H, Suriano S, Zhou L, Hu SJ (2009) High-definition metrology based spatial variation pattern analysis for machining process monitoring and diagnosis. In: Proceedings of ASME 2009 International Manufacturing Science and Engineering Conference, MSEC2009-84154, West Lafayette, Indiana, USA

  • Xi Z, Youn BD, Hu C (2010) Random field characterization considering statistical dependence for probability analysis and design. J Mech Des 132(10):101008(12)

    Article  Google Scholar 

  • Xu H, Rahman S (2004) A generalized dimension-reduction method for multidimensional integration in stochastic mechanics. Int J Numer Method Eng 61:1992–2019

    Article  MATH  Google Scholar 

  • Yin X, Lee S, Chen W, Liu WK (2009) Efficient random field uncertainty propagation in design using multiscale analysis. J Mech Des 131(2):021006(10)

    Article  Google Scholar 

  • Youn BD, Xi Z (2009) Reliability-based robust design optimization using the eigenvector dimension reduction (EDR) method. Struct Multidiscip Optim 37(5):475–492

    Article  MathSciNet  Google Scholar 

  • Youn BD, Choi KK, Yi K (2005) Performance moment integration (PMI) method for quality assessment in reliability-based robust design optimization. Mech Based Des Struct Mach 33:185–213

    Article  Google Scholar 

  • Zhan Z, Fu Y, Yang R-J, Xi Z, Shi L (2012) A Bayesian inference based model interpolation and extrapolation. SAE Int J Mater Manuf 5(2):357–364

    Article  Google Scholar 

  • Zhu J, Xing EP (2009) Maximum entropy discrimination markov networks. J Mach Learn Res 10:2531–2569

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Research was supported by the Faculty Research Initiation and Seed Grant at University of Michigan Dearborn, by the Basic Research Project of Korea Institute of Machinery and Materials which is originally supported by Korea Research Council for Industrial Science & Technology, by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2013R1A2A2A01068627), by the Brain Korea 21 Plus Project in 2013, and by the Institute of Advanced Machinery and Design at Seoul National University (SNU-IAMD). In addition, the authors appreciate Dr. Hui Wang at University of Michigan – Ann Arbor for providing the random field realization of a V-8 engine head.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeng D. Youn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, Z., Youn, B.D., Jung, B.C. et al. Random field modeling with insufficient field data for probability analysis and design. Struct Multidisc Optim 51, 599–611 (2015). https://doi.org/10.1007/s00158-014-1165-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-014-1165-0

Keywords

Navigation