Skip to main content
Log in

Level set based robust shape and topology optimization under random field uncertainties

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

A robust shape and topology optimization (RSTO) approach with consideration of random field uncertainty in loading and material properties is developed in this work. The proposed approach integrates the state-of-the-art level set methods for shape and topology optimization and the latest research development in design under uncertainty. To characterize the high-dimensional random-field uncertainty with a reduced set of random variables, the Karhunen–Loeve expansion is employed. The univariate dimension-reduction (UDR) method combined with Gauss-type quadrature sampling is then employed for calculating statistical moments of the design response. The combination of the above techniques greatly reduces the computational cost in evaluating the statistical moments and enables a semi-analytical approach that evaluates the shape sensitivity of the statistical moments using shape sensitivity at each quadrature node. The applications of our approach to structure and compliant mechanism designs show that the proposed RSTO method can lead to designs with completely different topologies and superior robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

C(x1, x2):

spatial covariance function

D :

spatial domain

E ijkl :

elastic tensor

a(x, ω):

random field

\(\bar {a}\left( x \right)\) :

mean function of a(x, ω)

a i (x) or ai:

ith eigenfunction of random field

g(z):

function of z

J:

objective functional

p(z):

joint probability density function

u :

state variable

V(x):

design velocity field

\(\emph{w}_{i }\) :

weight of the ith quadrature point

ϕ :

level set function

λ :

Lagrange multiplier

λ i :

ith eigenvalue of random field

ξ i (ω):

orthogonal random variables with zero mean and unit variance

μ :

mean performance

σ 2 :

performance variance

z :

vector of random variables

z i :

the i-th random variable of z

z ij :

the j-th quadrature node of z i

Θ:

sample space

ω :

an element of sample space Θ

Ω:

geometric shape of design

\(\partial \Omega \) :

boundary of Ω

References

  • Allaire G, Jouve F, Toader A-M (2002) A level-set method for shape optimization. C R Acad Sci Paris Serie I 334:1–6

    MathSciNet  Google Scholar 

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393

    Article  MATH  MathSciNet  Google Scholar 

  • Allen M, Maute K (2005) Reliability-based shape optimization of structures undergoing fluid–structure interaction phenomena. Comput Methods Appl Mech Eng 194(30–33):3472–3495

    Article  MATH  Google Scholar 

  • Arian E, Ta’asan S (1995) Shape optimization in one-shot. In: Boggaard J et al (eds) Optimal design and control. Birkhauser, Boston, pp 273–294

    Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224

    Article  Google Scholar 

  • Bendsøe MP, Ben-Tal A, Zowe J (1994) Optimization methods for truss geometry and topology design. Struct Multidiscipl Optim 7:141–159

    Google Scholar 

  • Beyer H-G, Sendhoff B (2007) Robust optimization—a comprehensive survey. Comput Methods Appl Mech Eng 196(33–34):3190–3218

    Article  MATH  MathSciNet  Google Scholar 

  • Birge J, Louveaux F (1997) Introduction to stochastic programming. Springer, New York

    MATH  Google Scholar 

  • Chen SK, Wang MY (2006) Conceptual design of compliant mechanisms using level set method. Frontiers of Mechanical Engineering in China 1(2):131–145

    Article  Google Scholar 

  • Chen SK, Wang MY (2007) Designing distributed compliant mechanisms with characteristic stiffness. In: of the ASME 2007 international design engineering technical conferences and computers and information in engineering conference IDETC/CIE 2007. Las Vegas, Nevada, USA

  • Chen W, Allen JK, Tsui KL, Mistree F (1996) A procedure for robust design: minimizing variations caused by noise factors and control factors. ASME J Mech Des 18(4):478–485

    Article  Google Scholar 

  • Chen SK, Wang MY, Liu AQ (2008) Shape feature control in structural topology optimization. Computer-Aided Des 40(9):951–962

    Article  MathSciNet  Google Scholar 

  • Chen SK, Wang MY, Wang SY (2005) Optimal synthesis of compliant mechanisms using a connectivity preserving level set method. In: of ASME 2005 international design engineering technical conferences and computers and information in engineering conference, 31st design automation conference. Long Beach, CA

  • Chen S, Lee S, Chen W (2009) Level set based robust shape and topology optimization under random field uncertainties. In: ASME 2009 international design engineering technical conferences and computers and information in engineering conference. San Diego, California, USA

  • Christiansen S, Patriksson M, Wynter L (2001) Stochastic bilevel programming in structural optimization. Struct Multidiscipl Optim 21(5):361–371

    Article  Google Scholar 

  • Conti S, Held H, Pach M, Rumpf M, Schultz R (2008) Shape optimization under uncertainty—a stochastic programming perspective. SIAM J Optim 19(4):1610–1632

    Article  MathSciNet  Google Scholar 

  • Du X, Chen W (2000) Towards a better understanding of modeling feasibility robustness in engineering design. ASME J Mech Des 122:385–394

    Article  Google Scholar 

  • Du X, Chen W (2001) A most probable point based method for uncertainty analysis. J Des Manuf Autom 4:47–66

    Article  Google Scholar 

  • Engels H (1980) Numerical quadrature and cubature. Academic, London

    MATH  Google Scholar 

  • Ghanem RG, Doostan A (2006) On the construction and analysis of stochastic models: characterization and propagation of the errors associated with limited data. J Comput Phys 217:63–81

    Article  MATH  MathSciNet  Google Scholar 

  • Ghanem RG, Spanos PD (1991) Stochastic finite elements: a spectral approach. Springer, New York

    MATH  Google Scholar 

  • Haldar A, Mahadevan S (2000) Reliability assessment using stochastic finite element analysis. Wiley, New York

    Google Scholar 

  • Jin R, Du X, Chen W (2003) The use of metamodeling techniques for optimization under uncertainty. J Struct Multidiscipl Optim 25(2):99–116

    Article  Google Scholar 

  • Jung H-S, Cho S (2004) Reliability-based topology optimization of geometrically nonlinear structures with loading and material uncertainties. Finite Elem Anal Des 41(3):311–331

    Article  MathSciNet  Google Scholar 

  • Kalsi M, Hacker K, Lewis K (2001) A comprehensive robust design approach for decision trade-offs in complex systems design. J Mech Des 123(1):1–10

    Article  Google Scholar 

  • Kharmanda G, Olhoff N (2002) Reliability-based topology optimization as a new strategy to generate different structural topologies. In: 15th Nordic seminar on computational mechanics. Aalborg, Denmark

    Google Scholar 

  • Kharmanda G, Olhoff N, Mohamed A, Lemaire M (2004) Reliability-based topology optimization. Struct Multidiscipl Optim 26(5):295–307

    Article  Google Scholar 

  • Kogiso N, Ahn W, Nishiwaki S, Izui K, Yoshimura M (2008) Robust topology optimization for compliant mechanisms considering uncertainty of applied loads. J Adv Mech Des Syst Manufac 2(1):96–107

    Article  Google Scholar 

  • Lee SH, Chen W (2008) A comparative study of uncertainty propagation methods for black-box type functions. Struct Multidiscipl Optim 37(3):239–253

    Article  MathSciNet  Google Scholar 

  • Lee SH, Chen W, Kwak BM (2009) Robust design with arbitrary distributions using Gauss-type quadrature formula. Struct Multidiscipl Optim 39(3):227–243

    Article  MathSciNet  Google Scholar 

  • Maute K, Frangopol DM (2003) Reliability-based design of MEMS mechanisms by topology optimization. Comput Struct 81:813–824

    Article  Google Scholar 

  • Melchers RE (1999) Structural reliability analysis and prediction. Wiley, Chichester

    Google Scholar 

  • Mogami K et al (2006) Reliability-based structural optimization of frame structures for multiple failure criteria using topology optimization techniques. Struct Multidiscipl Optim 32(4):299–311

    Article  Google Scholar 

  • Mozumder C et al (2006) An investigation of reliability-based topology optimization techniques. In: Proceedings of the 11th AIAA/ISSMO multidisciplinary analysis and optimization conference, AIAA-2006–7058. AIAA, Portsmouth

    Google Scholar 

  • Osher S, Fedkiw R (2003) Level sets methods and dynamic implicit surfaces. Springer, New York

    Google Scholar 

  • Osher S, Sethian J (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79:12–49

    Article  MATH  MathSciNet  Google Scholar 

  • Osher S, Santosa F (2001) Level set methods for optimization problems involving geometry and constraints. I. Frequencies of a two-density inhomogeneous drum. J Comput Phys 171:272–288

    Article  MATH  MathSciNet  Google Scholar 

  • Parkinson A, Sorensen C, Pourhassan N (1993) A general approach for robust optimal design. ASME J Mech Des 115(1):74–80

    Article  Google Scholar 

  • Phadke MS (1989) Quality engineering using robust design. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Pironneau O (1984) Optimal shape design for elliptic systems. Series in computational physics. Springer, New York

    Google Scholar 

  • Rahman S, Xu H (2004) A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics. Probab Eng Mech 19:393–408

    Article  Google Scholar 

  • Reddy J (1986) Applied functional analysis and variational methods in engineering. McGraw-Hill, New York

    MATH  Google Scholar 

  • Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4:250–254

    Article  Google Scholar 

  • Seepersad CC, Alien JK, Mcdowell DL, Mistree F (2006) Robust design of cellular materials with topological and dimensional imperfections. ASME J Mech Des 128:1285–1297

    Article  Google Scholar 

  • Sethian JA (1999) Level set methods and fast marching methods, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Sethian JA, Wiengmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163:489–528

    Article  MATH  MathSciNet  Google Scholar 

  • Sigmund O (2001) A 99 line topology optimization code written in MATLAB. Struct Multidiscipl Optim 21(2):120–127

    Article  Google Scholar 

  • Sokolowski J, Zolesio JP (1992) Introduction to shape optimization: shape sensitivity analysis. Springer, New York

    MATH  Google Scholar 

  • Taguchi G (1993) Taguchi on robust technology development: bringing quality engineering upstream. ASME, New York

    Google Scholar 

  • Wang MY, Chen SK (2009) Compliant mechanism optimization: analysis and design with intrinsic characteristic stiffness. Mech Des Struct Mach 37(2):183–200

    Article  Google Scholar 

  • Wang MY, Wang XM (2004a) ‘Color’ level sets: a multi-phase level set method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193:469–496

    Article  MATH  Google Scholar 

  • Wang MY, Wang XM (2004b) PDE-driven level sets, shape sensitivity, and curvature flow for structural topology optimization. Comput Model Eng Sci 6:373–395

    MATH  Google Scholar 

  • Wang MY, Wang XM, Guo DM (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246

    Article  MATH  MathSciNet  Google Scholar 

  • Wang MY, Chen SK, Wang XM, Mei YL (2005) Design of multi-material compliant mechanisms using level set methods. ASME J Mech Des 127(5):941–956

    Article  Google Scholar 

  • Wu CFJ, Hamada M (2000) Experiments: planning, analysis, and parameter design optimization. Wiley, New York

    MATH  Google Scholar 

  • Xu H, Rahman S (2004) A generalized dimension-reduction method for multi-dimensional integration in stochastic mechanics. Int J Numer Methods Eng 61:1992–2019

    Article  MATH  Google Scholar 

  • Ying X, Lee S, Chen W, Liu W (2009) Efficient random field uncertainty propagation in design using multiscale analysis. ASME J Mech Des 131(2):021006.1–021006.10

    Google Scholar 

  • Zabaras N (2007) Spectral methods for uncertainty quantification. Available from: http://mpdc.mae.cornell.edu/

  • Zhao Y-G, Ono T (2001) Moment methods for structural reliability. J Struct Saf 23:47–75

    Article  Google Scholar 

Download references

Acknowledgments

The grant support (CMMI-0522662) from National Science Foundation (NSF) and the support from the Center for Advanced Vehicular Systems at Mississippi State University via Department of Energy Contract No: DE-AC05-00OR22725 are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S., Chen, W. & Lee, S. Level set based robust shape and topology optimization under random field uncertainties. Struct Multidisc Optim 41, 507–524 (2010). https://doi.org/10.1007/s00158-009-0449-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-009-0449-2

Keywords

Navigation