Skip to main content
Log in

Adaptive-sparse polynomial chaos expansion for reliability analysis and design of complex engineering systems

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper presents an adaptive-sparse polynomial chaos expansion (adaptive-sparse PCE) method for performing engineering reliability analysis and design. The proposed method combines three ideas: (i) an adaptive-sparse scheme to build sparse PCE with the minimum number of bivariate basis functions, (ii) a new projection method using dimension reduction techniques to effectively compute the expansion coefficients of system responses, and (iii) an integration of copula to handle nonlinear correlation of input random variables. The proposed method thus has three positive features for reliability analysis and design: (a) there is no need for response sensitivity analysis, (b) it is highly efficient and accurate for reliability analysis and its sensitivity analysis, and (c) it is capable of handling a nonlinear correlation. In addition to the features, an error decomposition scheme for the proposed method is presented to help analyze error sources in probability analysis. Several engineering problems are used to demonstrate the three positive features of the adaptive-sparse PCE method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Au SK, Beck JL (2001) Estimation of small failure probabilities in high dimensions by subset simulation. Probab Eng Mech 16(4):263−277

    Article  Google Scholar 

  • Bieri M, Schwab C (2009) Sparse high order FEM for elliptic sPDEs. Comput Methods Appl Mech Eng 198:1149−1170

    Article  MathSciNet  MATH  Google Scholar 

  • Blatman G, Sudret B (2008) Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach. Comptes Rendus Mécanique 336(6):518−523

    Article  MATH  Google Scholar 

  • Breitung K (1984) Asymptotic approximations for multinormal integrals. J Eng Mech Div ASCE 110(3):357−366

    Article  Google Scholar 

  • Cameron RH, Martin WT (1947) The orthogonal development of nonlinear functionals in series of Fourier−Hermite functionals. Ann Math 48:385−392

    Article  MathSciNet  Google Scholar 

  • Choi S, Grandhi RV, Canfield RA (2004a) Structural reliability under non-Gaussian stochastic behavior. Comput Struct 82:1113−1121

    Article  Google Scholar 

  • Choi S, Grandhi RV, Canfield RA, Pettit CL (2004b) Polynomial chaos expansion with latin hypercube sampling for estimating response variability. AIAA J 42(n6):1191−1198

    Article  Google Scholar 

  • Creveling CM (1997) Tolerance design: a handbook for developing optimal specification. Addison-Wesley, Cambridge

    Google Scholar 

  • Field RV (2002) Numerical methods to estimate the coefficients of the polynomial chaos expansion. In: Proceedings of the 15th ASCE engineering mechanics conference

  • Foo J, Karniadakis GE (2010) Multi-element probabilistic collocation method in high dimensions. J Comput Phys 229:1536−1557

    Article  MathSciNet  MATH  Google Scholar 

  • Foo J, Wan X, Karniadakis GE (2008) The multi-element probabilistic collocation method (ME-PCM): error analysis and applications. J Comput Phys 227:9572−9595

    Article  MathSciNet  MATH  Google Scholar 

  • Franke R (1979) A critical comparison of some methods for interpolation of scattered data. Naval Postgraduate School Technical Report, NPS-53-79-003

  • Fu G, Moses F (1988) Importance sampling in structural system reliability. In: Proceedings of ASCE joint specialty conference on probabilistics method. Blacksburg, Virginia, United States, pp 340−343

    Google Scholar 

  • Gerstner T, Griebel M (1998) Numerical integration using sparse grids. Numer Algorithms 18(3):209−232

    Article  MathSciNet  MATH  Google Scholar 

  • Gerstner T, Griebel M (2003) Dimension-adaptive tensor-product quadrature. Computing 71(1):65−87

    Article  MathSciNet  MATH  Google Scholar 

  • Ghanem RG, Spanos PD (1991) Stochastic finite elements: a spectral approach. Springer, New York

    MATH  Google Scholar 

  • Han J, Kamber M (2000) Data mining: concepts and techniques (the Morgan Kaufmann Series in data management systems). Morgan Kaufmann

  • Hasofer AM, Lind NC (1974) Exact and invariant second-moment code format. J Eng Mech Div ASCE 100:111−121

    Google Scholar 

  • Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the international joint conference on artificial intelligence—IJCAI’95’

  • Le Maître OP, Knio OM, Najm HN, Ghanem RG (2001) A stochastic projection method for fluid flow—I. Basic formulation. J Comput Phys 173:481−511

    Article  MathSciNet  MATH  Google Scholar 

  • Le Maître OP, Reagan M, Najm HN, Ghanem RG, Knio OM (2002) A stochastic projection method for fluid flow–II. Random process. J Comput Phys 181:9−44

    Article  MathSciNet  MATH  Google Scholar 

  • Le Maitre O, Najm H, Ghanem R, Knio O (2004) Multi-resolution analysis of Wiener-type uncertainty propagation schemes. J Comput Phys 197:502−531

    Article  MathSciNet  MATH  Google Scholar 

  • Lee SH, Chen W (2007) A comparative study of uncertainty propagation methods for black-box-type problems. Struct Multidiscipl Optim. doi:10.1007/s00158-008-0234-7

    Google Scholar 

  • Lee SH, Kwak BM (2005) Response surface augmented moment method for efficient reliability analysis. Struct Saf 28:261−272

    Article  Google Scholar 

  • Lee I, Choi KK, Du L, Gorsich D (2008) Dimension reduction method for reliability-based robust design optimization. Comput Struct 86(13-14):1550−1562

    Article  Google Scholar 

  • Liu H, Chen W, Kokkolaras M, Papalambros PY, Kim HM (2006) Probabilistic analytical target cascading: a moment matching formulation for multilevel optimization under uncertainty. J Mech Des 128(4):991−1000

    Article  Google Scholar 

  • Ma X, Zabaras N (2009) An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. J Comput Phys 228:3084−3113

    Article  MathSciNet  MATH  Google Scholar 

  • Noh Y, Choi KK, Du L (2008) Selection of copula to generate input joint CDF for RBDO. In: ASME international design engineering technical conference & computers and information in engineering conference, IDETC2008-49494, Brooklyn, New York, United States, 3−6 August 2008

  • Noh Y, Choi KK, Du L (2009) Reliability-based design optimization of problems with correlated input variables using a Gaussian Copula. Struct Multidiscipl Optim 38(1):1−16

    Article  Google Scholar 

  • Paffrath M, Wever U (2007) Adapted polynomial chaos expansion for failure detection. J Comput Phys 226:263−281

    Article  MathSciNet  MATH  Google Scholar 

  • Penmetsa R, Grandhi R (2003) Adaptation of fast Fourier transformations to estimate structural failure probability. Finite Elem Anal Des 39:473−485

    Article  Google Scholar 

  • Rahman S (2006) A dimensional decomposition method for stochastic fracture mechanics. Eng Fract Mech 73(15):2093−2109

    Article  Google Scholar 

  • Rahman S (2009) Stochastic sensitivity analysis by dimensional decomposition and score functions. Probab Eng Mech 24(3): 278−287

    Article  Google Scholar 

  • Rahman S, Xu H (2004) A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics. Probab Eng Mech 19:393−408

    Article  Google Scholar 

  • Rosenblatt M (1952) Remarks on a multivariate transformation. Ann Math Stat 23:470−472

    Article  MathSciNet  MATH  Google Scholar 

  • Roser BN (1999) An introduction to copulas. Springer, New York

    Google Scholar 

  • Rubinstein RY (1981) Simulation and the Monte Carlo method. Wiley, New York

    Book  MATH  Google Scholar 

  • Smolyak SA (1963) Quadrature and interpolation formulas for tensor products of certain classes of functions. Sov Math Dokl 4:240−243

    Google Scholar 

  • Sudret B, Der Kiureghian A (2002) Comparison of finite element reliability methods. Probab Eng Mech 17:337−348

    Article  Google Scholar 

  • Todor RA, Schwab C (2007) Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients. IMA J Numer Anal 27:232−261

    Article  MathSciNet  MATH  Google Scholar 

  • Tvedt L (1984) Two second-order approximations to the failure probability. Section on structural reliability. A/S Vertas Research, Hovik

    Google Scholar 

  • Wan X, Karniadakis GE (2005) An adaptive multi-element generalized polynomial chaos method for stochastic differential equations. J Comput Phys 209(2):617−642

    Article  MathSciNet  MATH  Google Scholar 

  • Wan X, Karniadakis GE (2006) Multi-element generalized polynomial chaos for arbitrary probability measures. SIAM J Sci Comput 28:901−928

    Article  MathSciNet  MATH  Google Scholar 

  • Wang LP, Grandhi RV (1996) Safety index calculation using intervening variables for structural reliability. Comput Struct 59(6):1139−1148

    Article  MATH  Google Scholar 

  • Wiener N (1938) The homogeneous chaos. Am J Math 60:897−936

    Article  MathSciNet  Google Scholar 

  • Wu CC, Chen Z, Tang GR (1998) Component tolerance design for minimum quality loss and manufacturing cost. Comput Ind 35:223−232

    Article  Google Scholar 

  • Xiu D (2009) Fast numerical methods for stochastic computations: a review. Communications in Computational Physics 5:242− 272

    MathSciNet  Google Scholar 

  • Xiu D, Karniadakis GE (2003) The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 187:137−167

    MathSciNet  MATH  Google Scholar 

  • Xu H, Rahman S (2004) A generalized dimension-reduction method for multi-dimensional integration in stochastic mechanics. Int J Numer Methods Eng 61:1992−2019

    Article  MATH  Google Scholar 

  • Youn BD, Choi KK (2004a) An investigation of nonlinearity of reliability-based design optimization approaches. J Mech Des 126(3):403−411

    Article  Google Scholar 

  • Youn BD, Choi KK (2004b) A new response surface methodology for reliability based design optimization. Comput Struct 82:241−256

    Article  Google Scholar 

  • Youn BD, Choi KK, Gu L, Yang RJ (2004) Reliability-based design optimization for crashworthiness of side impact. J Struct Multidiscipl Optim 26(3-4):272−283

    Article  Google Scholar 

  • Youn BD, Zhimin X, Wang P (2007a) Eigenvector dimension reduction (EDR) method for sensitivity-free probability analysis. Struct Multidiscipl Optim 37:13−28

    Article  Google Scholar 

  • Youn BD, Zhimin X, Wang P (2007b) Reliability-based robust design optimization using the eigenvector dimension reduction (EDR) method. Struct Multidiscipl Optim 37:475−492

    Article  Google Scholar 

  • Zhao YG, Ono T (2001) Moment methods for structural reliability. Struct Saf 23(1):47−75

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge that this research is partially supported by US National Science Foundation (NSF) under Grant No. GOALI-0729424, U.S. Army TARDEC by the STAS contract (TCN-05122), and by General Motors under Grant No. TCS02723.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeng D. Youn.

Appendix

Appendix

The derivation of the error decomposition

  1. Error source I:

    Truncation

    $$\begin{array}{rll} \varepsilon _P^2 &=&\int_\Gamma \big[{g-\emph{w}_{UB}^p} \big]^2f({\rm {\bf x}})d{\rm {\bf x}} \\[12pt] &=&\int_\Gamma {\left[ {\begin{array}{@{}l} \displaystyle \sum\limits_k {\sum\limits_{j>p} {s_j^k \cdot \Phi _j ({\zeta _k})} } \\[18pt] + \displaystyle\sum\limits_{[x_k ,x_l ]\notin {\rm {\bf B}}} \sum\limits_{j_1 +j_2 \le p} s_{j_1 ,j_2 }^{k,l} \cdot \Phi _{j_1 ,j_2}({\zeta _k ,\zeta _l}) \\[18pt] + \displaystyle\sum\limits_{k<l} \sum\limits_{j_1 +j_2 >p} s_{j_1 ,j_2}^{k,l} \cdot \Phi _{j_1 ,j_2 } ({\zeta _k ,\zeta _l}) \\[18pt] \displaystyle +\sum\limits_{k<l<m} \sum\limits_{j_1 ,j_2 ,j_3 \ge 1} s_{j_1 ,j_2 ,j_3 }^{k,l,m} \\[18pt] \cdot \Phi _{j_1 ,j_2 ,j_3 } \left( {\zeta _k ,\zeta _l ,\zeta _m } \right) +\cdots \\ \end{array}}\!\!\! \right]^2 \!\! f({\rm {\bf x}})d{\rm {\bf x}}} \end{array}$$
  2. Error source II:

    Bivariate decomposition

    $$\begin{array}{rll} \varepsilon _B^2 &=&\int_\Gamma {\big[ {\emph{w}_{UB}^p -\emph{w}_U^p} \big]^2f({\rm {\bf x}})d{\rm {\bf x}}} \\[-1.5pt] &=&\int_\Gamma {\left[ {\sum\limits_{[{x_k ,x_l}]\in {\rm {\bf B}}} {\sum\limits_{j_1 +j_2 \le p} {\big( {s_{j_1 ,j_2 }^{k,l} -\hat {s}_{j_1 ,j_2 }^{k,l}} \big)\Phi _{j_1 ,j_2 } ({\zeta _k ,\zeta _l})} } } \right]^2f({\rm {\bf x}})d{\rm {\bf x}}} \\[-1.5pt] &=&\int_\Gamma {\left[ {\sum\limits_{[{x_k ,x_l}]\in {\rm {\bf B}}} {\sum\limits_{j_1 +j_2 \le p} {\frac{E\left[ {\big( {g({\rm {\bf x}})-g\big( {x_k ,x_l ,\boldsymbol{\upmu}^{k,l}} \big)} \big)\cdot \Phi _{j_1 ,j_2} ({\zeta _k ,\zeta _l})} \right]}{E\big[ {\Phi _{j_1 ,j_2 }^2 ({\zeta _k ,\zeta _l})} \big]}} } \cdot \Phi _{j_1 ,j_2 } ({\zeta _k ,\zeta _l})} \right]^2f ({\rm {\bf x}})d{\rm {\bf x}}} \end{array}$$

    where

    $$\begin{array}{rll} && E\left[ {\left( {g({\rm {\bf x}})-g\left( {x_k ,x_l ,\boldsymbol{\upmu}^{k,l}} \right)} \right)\Phi _{j_1 ,j_2} ({\zeta _k ,\zeta _l})} \right] \\[-1.5pt] &&{\kern10pt} =\frac{1}{2!1!1!}\sum\limits_{i\ne k,l} {\frac{\partial ^4g}{\partial x_i^2 \partial x_k \partial x_l }(\boldsymbol{\upmu})} \cdot E\big[{({x_i -\mu _i})^2({x_k -\mu _k})({x_l -\mu _l})\Phi _{j_1 ,j_2 } ({\zeta _k ,\zeta _l })} \big]+\cdots \end{array}$$
  3. Error source III:

    Univariate decomposition

    $$\begin{array}{rll} \varepsilon _U^2 &=& \int_\Gamma {\big[ {\emph{w}_U^p -\emph{w}_I^p } \big]^2f( {\rm {\bf x}} )d{\rm {\bf x}}} = \int_\Gamma {\left[ {\sum\limits_{k=1}^N {\sum\limits_{j=1}^p {\left( {s_j^k -\hat {s}_j^k } \right)\Phi _j \left( {\zeta _k } \right)} } } \right]^2f\left( {\rm {\bf x}} \right)d{\rm {\bf x}}} \\ &=&\int_\Gamma {\left[ {\sum\limits_{k=1}^N {\sum\limits_{j=1}^p {\frac{E\left[ {\left( {g\left( {\rm {\bf x}} \right)-g\left( {x_k ,\boldsymbol{\upmu}^k} \right)} \right)\Phi _j \left( {\zeta _k } \right)} \right]}{E\big[ {\Phi _j^2 ({\zeta _k})}\big]}} } \cdot \Phi _j ({\zeta _k})} \right]^2f({\rm {\bf x}})d{\rm {\bf x}}} \end{array}$$

    where

    $$ E\left[ {({g({\rm {\bf x}})-g ({x_k ,\boldsymbol{\upmu}^k})})\Phi _j ({\zeta _k})} \right] = \frac{1}{2!1!}\sum\limits_{i\ne k} {\frac{\partial ^3g}{\partial x_i^2 \partial x_k }(\boldsymbol{\upmu})} E\big[ {( {x_i -\mu _i } )^2({x_k -\mu _k})\Phi _j ({\zeta _k})} \big]+\cdots $$
  4. Error source IV:

    Aliasing error

    $$\begin{array}{rll} \varepsilon _I^2 &=&\int_\Gamma {\big[ {\emph{w}_I^p -\emph{w}^p} \big]^2} f({\rm {\bf x}})d{\rm {\bf x}} \\[-1.5pt] &=&\int_\Gamma {\left[ {\sum\limits_{k=1}^N {\sum\limits_{j=1}^p {\left( {\hat {s}_j^k -\hat {\hat {s}}_j^k } \right)\Phi _j ({\zeta _k}) +\sum\limits_{[{x_k ,x_l}]\in {\rm {\bf B}}} {\sum\limits_{j_1 +j_2 \le p} {\left( {\hat {s}_{j_1 ,j_2 }^{k,l} -\hat {\hat {s}}_{j_1 ,j_2 }^{k,l}}\right)\Phi _{j_1 ,j_2} ({\zeta _k ,\zeta _l})}}}}} \right]^2f ({\rm {\bf x}})d{\rm {\bf x}}} \\[-1.5pt] &=&\int_\Gamma {\left[ {\begin{array}{l} \displaystyle \sum\limits_{k=1}^N {\sum\limits_{j=1}^p {\frac{\big({E-\hat {E}} \big)\left[ {g\big({x_k ,\boldsymbol{\upmu}^k}\big)\Phi _j ({\zeta _k})} \right]}{E\big[ {\Phi _j^2 \left( {\zeta _k } \right)} \big]}} } \cdot \Phi _j ({\zeta _k}) \\ \displaystyle{\kern12pt} +\sum\limits_{[{x_k ,x_l}]\in {\rm {\bf B}}} {\sum\limits_{j_1 +j_2 \le p} {\frac{\big({E-\hat {E}}\big)\left[ {g( {x_k ,x_l ,\boldsymbol{\upmu}^{k,l}})\cdot \Phi _{j_1 ,j_2 } ({\zeta _k ,\zeta _l})} \right]}{E\big[ {\Phi _{j_1 ,j_2 }^2 ({\zeta _k ,\zeta _l})} \big]}} } \cdot \Phi _{j_1 ,j_2 } ({\zeta _k ,\zeta _l }) \\ \end{array}} \right]^2f ({\rm {\bf x}})d{\rm {\bf x}}} \end{array}$$

    where \(\hat {E}(\cdot)\) denotes the approximate expectation by using the SMLS and Gaussian quadrature integration.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, C., Youn, B.D. Adaptive-sparse polynomial chaos expansion for reliability analysis and design of complex engineering systems. Struct Multidisc Optim 43, 419–442 (2011). https://doi.org/10.1007/s00158-010-0568-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-010-0568-9

Keywords

Navigation