Skip to main content
Log in

On multigrid-CG for efficient topology optimization

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This article presents a computational approach that facilitates the efficient solution of 3-D structural topology optimization problems on a standard PC. Computing time associated with solving the nested analysis problem is reduced significantly in comparison to other existing approaches. The cost reduction is obtained by exploiting specific characteristics of a multigrid preconditioned conjugate gradients (MGCG) solver. In particular, the number of MGCG iterations is reduced by relating it to the geometric parameters of the problem. At the same time, accurate outcome of the optimization process is ensured by linking the required accuracy of the design sensitivities to the progress of optimization. The applicability of the proposed procedure is demonstrated on several 2-D and 3-D examples involving up to hundreds of thousands of degrees of freedom. Implemented in MATLAB, the MGCG-based program solves 3-D topology optimization problems in a matter of minutes. This paves the way for efficient implementations in computational environments that do not enjoy the benefits of high performance computing, such as applications on mobile devices and plug-ins for modeling software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aage N, Lazarov B (2013) Parallel framework for topology optimization using the method of moving asymptotes. Struct Multidiscip Optim 47(4):493–505. doi:10.1007/s00158-012-0869-2

    Article  MATH  MathSciNet  Google Scholar 

  • Aage N, Nobel-Jørgensen M, Andreasen CS, Sigmund O (2013) Interactive topology optimization on hand-held devices. Struct Multidiscip Optim 47(1):1–6

    Article  Google Scholar 

  • Amir O, Bendsøe MP, Sigmund O (2009) Approximate reanalysis in topology optimization. Int J Numer Methods Eng 78:1474–1491

    Article  MATH  Google Scholar 

  • Amir O, Stolpe M, Sigmund O (2010) Efficient use of iterative solvers in nested topology optimization. Struct Multidiscip Optim 42:55–72

    Article  MATH  Google Scholar 

  • Amir O, Sigmund O (2011) On reducing computational effort in topology optimization: how far can we go? Struct Multidiscip Optim 44:25–29

    Article  MATH  Google Scholar 

  • Amir O, Sigmund O, Schevenels M, Lazarov B (2012) Efficient reanalysis techniques for robust topology optimization. Comput Methods Appl Mech Eng 245–246:217–231

    Article  MathSciNet  Google Scholar 

  • Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in matlab using 88 lines of code. Struct Multidiscip Optim 43:1–16

    Article  MATH  Google Scholar 

  • Ashby SF, Falgout RD (1996) A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations. Nucl Sci Eng 124:145–159

    Google Scholar 

  • Baker A, Falgout R, Gamblin T, Kolev T, Schulz M, Yang U (2012a) Scaling algebraic multigrid solvers: on the road to exascale. In: Bischof C, Hegering H-G, Nagel WE, Wittum G (eds) Competence in high performance computing 2010. Springer, Berlin, pp 215–226

    Google Scholar 

  • Baker A, Falgout R, Kolev T, Yang U (2012b) Scaling hypre’s multigrid solvers to 100,000 cores. In: Berry MW, Gallivan KA, Gallopoulos E, Grama A, Philippe B, Saad Y, Saied F (eds) High-performance scientific computing. Springer, London, pp 261–279. doi:10.1007/978-1-4471-2437-5_13

    Chapter  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization—theory, methods and applications. Springer, Berlin

    Google Scholar 

  • Bogomolny M (2010) Topology optimization for free vibrations using combined approximations. Int J Numer Methods Eng 82(5):617–636. doi:10.1002/nme.2778

    MATH  Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50:2143–2158

    Article  MATH  MathSciNet  Google Scholar 

  • Bramble JH, Pasciak JE, Wang J, Xu J (1991) Convergence estimates for multigrid algorithms without regularity assumptions. Math Comput 57:23–45

    Article  MATH  MathSciNet  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190:3443–3459

    Article  MATH  Google Scholar 

  • Chow E, Falgout RD, Hu JJ, Tuminaro RS, Yang UM (2006) A survey of parallelization techniques for multigrid solvers. In: Heroux MA, Raghavan P, Simon HD (eds) Parallel processing for scientific computing, chapter 10. SIAM, Philadelphia, pp 179–201

    Chapter  Google Scholar 

  • Davis TA (2006) Direct methods for sparse linear system. SIAM, Philadelphia

    Book  Google Scholar 

  • Evgrafov A, Rupp CJ, Maute K, Dunn ML (2008) Large-scale parallel topology optimization using a dual-primal substructuring solver. Struct Multidiscip Optim 36:329–345

    Article  MATH  MathSciNet  Google Scholar 

  • Farhat C, Lesoinne M, LeTallec P, Pierson K, Rixen D (2001) FETI-DP: a dual–primal unified FETI method—part I: a faster alternative to the two-level FETI method. Int J Numer Methods Eng 50(7):1523–1544

    Article  MATH  MathSciNet  Google Scholar 

  • Guest JK, Smith Genut LC (2010) Reducing dimensionality in topology optimization using adaptive design variable fields. Int J Numer Methods Eng 81(8):1019–1045. doi:10.1002/nme.2724

    MATH  Google Scholar 

  • Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J Res Nat Bur Stan 49(6):409–436

    Article  MATH  MathSciNet  Google Scholar 

  • Kim JE, Jang G-W, Kim YY (2003) Adaptive multiscale wavelet-galerkin analysis for plane elasticity problems and its applications to multiscale topology design optimization. Int J Solids Struct 40(23):6473–6496

    Article  MATH  Google Scholar 

  • Kim SY, Kim IY, Mechefske CK (2012) A new efficient convergence criterion for reducing computational expense in topology optimization: reducible design variable method. Int J Numer Methods Eng 90(6):752–783. doi:10.1002/nme.3343

    Article  MATH  Google Scholar 

  • Kim YY, Yoon GH (2000) Multi-resolution multi-scale topology optimization—a new paradigm. Int J Solids Struct 37(39):5529–5559

    Article  MATH  MathSciNet  Google Scholar 

  • Lazarov BS (2013) Topology optimization using multiscale finite element method for high-contrast media. In review

  • Maar B, Schulz V (2000) Interior point multigrid methods for topology optimization. Struct Multidiscip Optim 19:214–224

    Article  Google Scholar 

  • Nguyen TH, Paulino GH, Song J, Le CH (2010) A computational paradigm for multiresolution topology optimization (mtop). Struct Multidiscip Optim 41:525–539. doi:10.1007/s00158-009-0443-8

    Article  MATH  MathSciNet  Google Scholar 

  • Nguyen TH, Paulino GH, Song J, Le CH (2012) Improving multiresolution topology optimization via multiple discretizations. Int J Numer Methods Eng 92(6):507–530. doi:10.1002/nme.4344

    Article  MathSciNet  Google Scholar 

  • Poulsen TA (2002) Topology optimization in wavelet space. Int J Numer Methods Eng 53(3):567–582

    Article  MATH  MathSciNet  Google Scholar 

  • Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Sigmund O (1997a) On the design of compliant mechanisms using topology optimization. Mech Based Des Struct Mach 25:493–524

    Article  Google Scholar 

  • Sigmund O, Torquato S (1997b) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067

    Article  MathSciNet  Google Scholar 

  • Sigmund O, Maute K (2012) Sensitivity filtering from a continuum mechanics perspective. Struct Multidiscip Optim 46:471–475. doi:10.1007/s00158-012-0814-4

    Article  MATH  MathSciNet  Google Scholar 

  • Stainko R (2006a) An adaptive multilevel approach to the minimal compliance problem in topology optimization. Commun Numer Methods Eng 22(2):109–118. doi:10.1002/cnm.800

    Article  MATH  MathSciNet  Google Scholar 

  • Stainko R (2006b) Advanced multilevel techniques to topology optimization. PhD thesis, Johannes Kepler Universitȧt Linz

  • Suresh K (2013) Efficient generation of large-scale pareto-optimal topologies. Struct Multidiscip Optim 47:49–61. doi:10.1007/s00158-012-0807-3

    Article  MATH  MathSciNet  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MATH  MathSciNet  Google Scholar 

  • Tatebe O, Oyanagi Y (1994) Efficient implementation of the multigrid preconditioned conjugate gradient method on distributed memory machines. In: Proceedings of Supercomputing’94. IEEE, pp 194–203

  • Trottenberg U, Oosterlee C, Schuller A (2001) Multigrid. Academic Press, London

    MATH  Google Scholar 

  • Vassilevski PS (2008) Multilevel block factorization preconditioners: matrix-based analysis and algorithms for solving finite element equations. Springer, New York

    Google Scholar 

  • Wang S, de Sturler E, Paulino GH (2007) Large-scale topology optimization using preconditioned Krylov subspace methods with recycling. Int J Numer Methods Eng 69:2441–2468

    Article  MATH  Google Scholar 

  • Zhou S, Wang MY (2007) Multimaterial structural topology optimization with a generalized cahn-hilliard model of multiphase transition. Struct Multidiscip Optim 33:89–111. doi:10.1007/s00158-006-0035-9

    Article  MATH  MathSciNet  Google Scholar 

  • Zuo W, Xu T, Zhang H, Xu T (2011) Fast structural optimization with frequency constraints by genetic algorithm using adaptive eigenvalue reanalysis methods. Struct Multidiscip Optim 43:799–810. doi:10.1007/s00158-010-0610-y

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Ole Sigmund for fruitful discussions and helpful comments on the manuscript. The anonymous reviewers’ valuable remarks are gratefully acknowledged. The authors acknowledge the financial support received from the European Commission Research Executive Agency, grant agreement PCIG12-GA-2012-333647; and from the NextTop project, sponsored by the Villum foundation. The authors also thank Krister Svanberg for the MATLAB MMA code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oded Amir.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(M 7.45 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amir, O., Aage, N. & Lazarov, B.S. On multigrid-CG for efficient topology optimization. Struct Multidisc Optim 49, 815–829 (2014). https://doi.org/10.1007/s00158-013-1015-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-013-1015-5

Keywords

Navigation