Skip to main content
Log in

Association between sepsis survivorship and long-term cardiovascular outcomes in adults: a systematic review and meta-analysis

  • Systematic Review
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

We aimed to determine the association between sepsis and long-term cardiovascular events.

Methods

We conducted a systematic review of observational studies evaluating post-sepsis cardiovascular outcomes in adult sepsis survivors. MEDLINE, Embase, and the Cochrane Controlled Trials Register and Database of Systematic Reviews were searched from inception until April 21st, 2021. Two reviewers independently extracted individual study data and evaluated risk of bias. Random-effects models estimated the pooled crude cumulative incidence and adjusted hazard ratios (aHRs) of cardiovascular events compared to either non-septic hospital survivors or population controls. Primary outcomes included myocardial infarction, stroke, and congestive heart failure; outcomes were analysed at maximum reported follow-up (from 30 days to beyond 5 years post-discharge).

Results

Of 12,649 screened citations, 27 studies (25 cohort studies, 2 case-crossover studies) were included with a median of 4,289 (IQR 502–68,125) sepsis survivors and 18,399 (IQR 4,028–83,506) controls per study. The pooled cumulative incidence of myocardial infarction, stroke, and heart failure in sepsis survivors ranged from 3 to 9% at longest reported follow-up. Sepsis was associated with a higher long-term risk of myocardial infarction (aHR 1.77 [95% CI 1.26 to 2.48]; low certainty), stroke (aHR 1.67 [95% CI 1.37 to 2.05]; low certainty), and congestive heart failure (aHR 1.65 [95% CI 1.46 to 1.86]; very low certainty) compared to non-sepsis controls.

Conclusions

Surviving sepsis may be associated with a long-term, excess hazard of late cardiovascular events which may persist for at least 5 years following hospital discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Upon request, from corresponding author.

Code availability

Statistical code included in the supplement.

References

  1. Rudd KE, Johnson SC, Agesa KM et al (2020) Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet 395:200–211. https://doi.org/10.1016/S0140-6736(19)32989-7

    Article  PubMed  PubMed Central  Google Scholar 

  2. Prescott HC, Angus DC (2018) Enhancing recovery from sepsis: a review. JAMA - J Am Med Assoc 319:62–75. https://doi.org/10.1001/jama.2017.17687

    Article  Google Scholar 

  3. Mankowski RT, Yende S, Angus DC (2019) Long-term impact of sepsis on cardiovascular health. Intensive Care Med 45:78–81. https://doi.org/10.1007/s00134-018-5173-1

    Article  CAS  PubMed  Google Scholar 

  4. Rahmel T, Schmitz S, Nowak H et al (2020) Long-term mortality and outcome in hospital survivors of septic shock, sepsis, and severe infections: the importance of aftercare. PLoS ONE. https://doi.org/10.1371/journal.pone.0228952

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shankar-Hari M, Rubenfeld GD (2016) Understanding long-term outcomes following sepsis: implications and challenges. Curr Infect Dis Rep 18:37. https://doi.org/10.1007/s11908-016-0544-7

    Article  PubMed  PubMed Central  Google Scholar 

  6. Prescott HC, Osterholzer JJ, Langa KM et al (2016) Late mortality after sepsis: propensity matched cohort study. BMJ 353:1–8. https://doi.org/10.1136/bmj.i2375

    Article  Google Scholar 

  7. Lone NI, Gillies MA, Haddow C et al (2016) Five-year mortality and hospital costs associated with surviving intensive care. Am J Respir Crit Care Med 194:198–208. https://doi.org/10.1164/rccm.201511-2234OC

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mostel Z, Perl A, Marck M et al (2019) Post-sepsis syndrome—an evolving entity that afflicts survivors of sepsis. Mol Med. https://doi.org/10.1186/s10020-019-0132-z

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cuthbertson BH, Elders A, Hall S et al (2013) Mortality and quality of life in the five years after severe sepsis. Crit Care 17:R70. https://doi.org/10.1186/cc12616

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nesseler N, Defontaine A, Launey Y et al (2013) Long-term mortality and quality of life after septic shock: a follow-up observational study. Intensive Care Med 39:881–888. https://doi.org/10.1007/s00134-013-2815-1

    Article  CAS  PubMed  Google Scholar 

  11. Levy MM, Rhodes A, Phillips GS et al (2015) Surviving sepsis campaign: association between performance metrics and outcomes in a 7.5-year study. Crit Care Med 43:3–12. https://doi.org/10.1097/CCM.0000000000000723

    Article  PubMed  Google Scholar 

  12. Yende S, D’Angelo G, Mayr F et al (2011) Elevated hemostasis markers after pneumonia increases one-year risk of all-cause and cardiovascular deaths. PLoS ONE. https://doi.org/10.1371/journal.pone.0022847

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yende S, D’Angelo G, Kellum JA et al (2008) Inflammatory markers at hospital discharge predict subsequent mortality after pneumonia and sepsis. Am J Respir Crit Care Med 177:1242–1247. https://doi.org/10.1164/rccm.200712-1777OC

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yende S, Kellum JA, Talisa VB et al (2019) Long-term host immune response trajectories among hospitalized patients with sepsis. JAMA Netw Open 2:1–15. https://doi.org/10.1001/jamanetworkopen.2019.8686

    Article  Google Scholar 

  15. Mira JC, Gentile LF, Mathias BJ et al (2017) Sepsis pathophysiology, chronic critical illness, and persistent inflammation-immunosuppression and catabolism syndrome. Crit Care Med 45:253–262. https://doi.org/10.1097/CCM.0000000000002074

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lawler PR, Bhatt DL, Godoy LC et al (2021) Targeting cardiovascular inflammation: next steps in clinical translation. Eur Hear J 42(1):113–131. https://doi.org/10.1093/eurheartj/ehaa099

    Article  Google Scholar 

  17. Musher DM, Abers MS, Corrales-Medina VF (2019) Acute infection and myocardial infarction. N Engl J Med 380:171–176. https://doi.org/10.1056/NEJMra1808137

    Article  CAS  PubMed  Google Scholar 

  18. Corrales-Medina VF, Alvarez KN, Weissfeld LA et al (2015) Association between hospitalization for pneumonia and subsequent risk of cardiovascular disease. JAMA - J Am Med Assoc 313:264–274. https://doi.org/10.1001/jama.2014.18229

    Article  Google Scholar 

  19. Yende S, Linde-Zwirble W, Mayr F et al (2014) Risk of cardiovascular events in survivors of severe sepsis. Am J Respir Crit Care Med 189:1065–1074. https://doi.org/10.1164/rccm.201307-1321OC

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lai CC, Lee MTG, Lee WC et al (2018) Susceptible period for cardiovascular complications in patients recovering from sepsis. CMAJ 190:E1062–E1069. https://doi.org/10.1503/cmaj.171284

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ou S-MM, Chu H, Chao P-WW et al (2016) Long-term mortality and major adverse cardiovascular events in sepsis survivors a nationwide population-based study. Am J Respir Crit Care Med 194:209–217. https://doi.org/10.1164/rccm.201510-2023OC

    Article  PubMed  Google Scholar 

  22. De Geer L, Oscarsson Tibblin A, Fredrikson M, Walther SM (2019) No association with cardiac death after sepsis: a nationwide observational cohort study. Acta Anaesthesiol Scand 63:344–351. https://doi.org/10.1111/aas.13280

    Article  PubMed  Google Scholar 

  23. Kosyakovsky LB, Angriman F, Katz E et al (2020) Abstract 13315: long-term risk of cardiovascular events following hospitalization for sepsis: a systematic review and meta-analysis. Circulation 142:A13315

    Article  Google Scholar 

  24. Stroup DF, Berlin JA, Morton SC et al (2000) Meta-analysis of observational studies in epidemiology. A proposal for reporting. JAMA 283:2008–2012. https://doi.org/10.1001/jama.283.15.2008

    Article  CAS  PubMed  Google Scholar 

  25. Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. https://doi.org/10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  26. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ WV (editors) (2020) Cochrane handbook for systematic reviews of interventions version 6.1 (updated September 2020). In: Cochrane. https://training.cochrane.org/handbook. Accessed 7 Jul 2020

  27. Bouza C, Lopez-Cuadrado T, Amate-Blanco JM (2016) Use of explicit ICD9-CM codes to identify adult severe sepsis: impacts on epidemiological estimates. Crit Care 20:313. https://doi.org/10.1186/s13054-016-1497-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Singer M, Deutschman CS, Seymour CW et al (2016) The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA - J Am Med Assoc 315:801–810. https://doi.org/10.1001/jama.2016.0287

    Article  CAS  Google Scholar 

  29. Jolley RJ, Sawka KJ, Yergens DW et al (2015) Validity of administrative data in recording sepsis: a systematic review. Crit Care 19:139. https://doi.org/10.1186/s13054-015-0847-3

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hayden JA, van der Windt DA, Cartwright JL, Côté P, Bombardier C (2013) Assessing bias in studies of prognostic factors. Ann Intern Med 158(4):280–286. https://doi.org/10.7326/0003-4819-158-4-201302190-00009

    Article  PubMed  Google Scholar 

  31. Foroutan F, Guyatt G, Zuk V et al (2020) GRADE Guidelines 28: use of GRADE for the assessment of evidence about prognostic factors: rating certainty in identification of groups of patients with different absolute risks. J Clin Epidemiol 121:62–70. https://doi.org/10.1016/j.jclinepi.2019.12.023

    Article  PubMed  Google Scholar 

  32. Jackson D, Law M, Rücker G, Schwarzer G (2017) The Hartung-Knapp modification for random-effects meta-analysis: a useful refinement but are there any residual concerns? Stat Med 36:3923–3934. https://doi.org/10.1002/sim.7411

    Article  PubMed  PubMed Central  Google Scholar 

  33. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188. https://doi.org/10.1016/0197-2456(86)90046-2

    Article  CAS  PubMed  Google Scholar 

  34. Tierney JF, Stewart LA, Ghersi D et al (2007) Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 8:16. https://doi.org/10.1186/1745-6215-8-16

    Article  PubMed  PubMed Central  Google Scholar 

  35. Higgins JPT, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. Br Med J 327:557–560. https://doi.org/10.1136/bmj.327.7414.557

    Article  Google Scholar 

  36. Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50:1088. https://doi.org/10.2307/2533446

    Article  CAS  PubMed  Google Scholar 

  37. Viechtbauer W, Cheung MW-L (2010) Outlier and influence diagnostics for meta-analysis. Res Synth Methods 1:112–125. https://doi.org/10.1002/jrsm.11

    Article  PubMed  Google Scholar 

  38. Mathur MB, VanderWeele TJ (2020) Sensitivity analysis for unmeasured confounding in meta-analyses. J Am Stat Assoc 115:163–172. https://doi.org/10.1080/01621459.2018.1529598

    Article  CAS  PubMed  Google Scholar 

  39. Wang HE, Moore JX, Donnelly JP et al (2017) Risk of acute coronary heart disease after sepsis hospitalization in the REasons for Geographic and Racial Differences in Stroke (REGARDS) Cohort. Clin Infect Dis 65:29–36. https://doi.org/10.1093/cid/cix248

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chang DW, Tseng CH, Shapiro MF (2015) Rehospitalizations following sepsis: common and costly. Crit Care Med 43:2085–2093. https://doi.org/10.1097/CCM.0000000000001159

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cheng CA, Cheng CG, Lin HC et al (2017) New-onset atrial fibrillation-related ischemic stroke occurring after hospital discharge in septicemia survivors. QJM 110:447–452. https://doi.org/10.1093/qjmed/hcx025

    Article  Google Scholar 

  42. Corrales-Medina VF, Taljaard M, Yende S et al (2015) Intermediate and long-term risk of new-onset heart failure after hospitalization for pneumonia in elderly adults. Am Heart J 170:306-312.e6. https://doi.org/10.1016/j.ahj.2015.04.028

    Article  PubMed  PubMed Central  Google Scholar 

  43. Prescott HC (2017) Variation in postsepsis readmission patterns: a cohort study of veterans affairs beneficiaries. Ann Am Thorac Soc 14:230–237. https://doi.org/10.1513/AnnalsATS.201605-398OC

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ishani A, Collins AJ, Herzog CA, Foley RN (2005) Septicemia, access and cardiovascular disease in dialysis patients: the USRDS Wave 2 Study. Kidney Int 68:311–318. https://doi.org/10.1111/j.1523-1755.2005.00414.x

    Article  PubMed  Google Scholar 

  45. Jafarzadeh SR, Thomas BS, Warren DK et al (2016) Longitudinal study of the effects of bacteremia and sepsis on 5-year risk of cardiovascular events. Clin Infect Dis 63:495–500. https://doi.org/10.1093/cid/ciw320

    Article  PubMed  PubMed Central  Google Scholar 

  46. Abramovich E, Barrett O, Dreiher J et al (2018) Incidence and variables associated with short and long-term mortality in patients with systemic lupus erythematosus and sepsis admitted in intensive care units. Lupus 27:1936–1943. https://doi.org/10.1177/0961203318796288

    Article  CAS  PubMed  Google Scholar 

  47. Wu MH, Tsou PY, Wang YH et al (2019) Impact of post-sepsis cardiovascular complications on mortality in sepsis survivors: a population-based study. Crit Care 23:1–11. https://doi.org/10.1186/s13054-019-2579-2

    Article  Google Scholar 

  48. Gupta VA, Sousa M, Kraitman N et al (2018) Coronary artery calcification predicts cardiovascular complications after sepsis. J Crit Care 44:261–266. https://doi.org/10.1016/j.jcrc.2017.11.038

    Article  PubMed  Google Scholar 

  49. Lee JT, Chung WT, Lin JD et al (2014) Increased risk of stroke after septicaemia: a population-based longitudinal study in Taiwan. PLoS ONE. https://doi.org/10.1371/journal.pone.0089386

    Article  PubMed  PubMed Central  Google Scholar 

  50. Aldás I, Menéndez R, Méndez R et al (2019) Early and late cardiovascular events in patients hospitalized for community-acquired pneumonia. Arch Bronconeumol 56:551–558. https://doi.org/10.1016/j.arbres.2019.10.009

    Article  PubMed  Google Scholar 

  51. Alnabelsi TS, Gupta VA, Su LC et al (2020) Usefulness of findings by multimodality imaging to stratify risk of major adverse cardiac events after sepsis at 1 and 12 months. Am J Cardiol 125:1732–1737. https://doi.org/10.1016/j.amjcard.2020.02.015

    Article  PubMed  Google Scholar 

  52. Boehme AK, Ranawat P, Luna J et al (2017) Risk of acute stroke after hospitalization for sepsis: a case-crossover study. Stroke 48:574–580. https://doi.org/10.1161/STROKEAHA.116.016162

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sebastian S, Stein LK, Dhamoon MS (2019) Infection as a stroke trigger: associations between different organ system infection admissions and stroke subtypes. Stroke 50:2216–2218. https://doi.org/10.1161/STROKEAHA.119.025872

    Article  PubMed  Google Scholar 

  54. Shih CJ, Chao PW, Ou SM, Chen YT (2017) Long-term risk of cardiovascular events in patients with chronic kidney disease who have survived sepsis: a nationwide cohort study. J Am Heart Assoc. https://doi.org/10.1161/JAHA.116.004613

    Article  PubMed  PubMed Central  Google Scholar 

  55. Vallabhajosyula S, Jentzer JC, Geske JB et al (2018) New-onset heart failure and mortality in hospital survivors of sepsis-related left ventricular dysfunction. Shock 49:144–149. https://doi.org/10.1097/SHK.0000000000000952

    Article  PubMed  PubMed Central  Google Scholar 

  56. Walkey AJ, Hammill BG, Curtis LH, Benjamin EJ (2014) Long-term outcomes following development of new-onset atrial fibrillation during sepsis. Chest 146:1187–1195. https://doi.org/10.1378/chest.14-0003

    Article  PubMed  PubMed Central  Google Scholar 

  57. Donzé JD, Ridker PM, Finlayson SRG, Bates DW (2014) Impact of sepsis on risk of postoperative arterial and venous thromboses: large Prospective cohort study. BMJ 349:1–10. https://doi.org/10.1136/bmj.g5334

    Article  CAS  Google Scholar 

  58. Gadre SK, Shah M, Mireles-Cabodevila E et al (2019) Epidemiology and predictors of 30-day readmission in patients with sepsis. Chest 155:483–490. https://doi.org/10.1016/j.chest.2018.12.008

    Article  PubMed  Google Scholar 

  59. Beesley SJ, Sorensen J, Walkey AJ et al (2021) Long-term implications of abnormal left ventricular strain during sepsis. Crit Care Med 49(4):e444–e453. https://doi.org/10.1097/CCM.0000000000004886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gupta VA, Alnabelsi TS, Shringi S, Leung SW, Sorrell VL (2020) Cardiovascular risk after sepsis: understanding the role of statin indications and the impact of clinical inertia on prescribing patterns. J Cardiovasc Pharmacol Ther 25(6):541–547. https://doi.org/10.1177/1074248420933395

    Article  PubMed  Google Scholar 

  61. Virani SS, Alonso A, Benjamin EJ et al (2020) Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation 141:E139–E596. https://doi.org/10.1161/CIR.0000000000000757

    Article  PubMed  Google Scholar 

  62. Carroll MD, Lacher DA, Sorlie PD et al (2005) Trends in serum lipids and lipoproteins of adults, 1960–2002. J Am Med Assoc 294:1773–1781. https://doi.org/10.1001/jama.294.14.1773

    Article  CAS  Google Scholar 

  63. Kwong JC, Schwartz KL, Campitelli MA et al (2018) Acute myocardial infarction after laboratory-confirmed influenza infection. N Engl J Med 378(4):345–353. https://doi.org/10.1056/NEJMoa1702090

    Article  PubMed  Google Scholar 

  64. Hawkins RB, Raymond SL, Stortz JA et al (2018) Chronic critical illness and the persistent inflammation, immunosuppression, and catabolism syndrome. Front Immunol. https://doi.org/10.3389/fimmu.2018.01511

    Article  PubMed  PubMed Central  Google Scholar 

  65. Merx MW, Weber C (2007) Sepsis and the heart. Circulation 116:793–802. https://doi.org/10.1161/CIRCULATIONAHA.106.678359

    Article  CAS  PubMed  Google Scholar 

  66. Kaynar AM, Yende S, Zhu L et al (2014) Effects of intra-abdominal sepsis on atherosclerosis in mice. Crit Care. https://doi.org/10.1186/s13054-014-0469-1

    Article  PubMed  PubMed Central  Google Scholar 

  67. Foley JH, Conway EM (2016) Cross talk pathways between coagulation and inflammation. Circ Res 118:1392–1408. https://doi.org/10.1161/CIRCRESAHA.116.306853

    Article  CAS  PubMed  Google Scholar 

  68. Lawler PR, Akinkuolie AO, Chandler PD et al (2016) Circulating N-linked glycoprotein acetyls and longitudinal mortality risk. Circ Res 118:1106–1115. https://doi.org/10.1161/CIRCRESAHA.115.308078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liuzzo G, Angiolillo DJ, Buffon A et al (2001) Enhanced response of blood monocytes to in vitro lipopolysaccharide-challenge in patients with recurrent unstable angina. Circulation 103:2236–2241. https://doi.org/10.1161/01.CIR.103.18.2236

    Article  CAS  PubMed  Google Scholar 

  70. Krumholz HM (2013) Post-hospital syndrome—an acquired, transient condition of generalized risk. N Engl J Med 368:100–102. https://doi.org/10.1056/NEJMp1212324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Seymour CW, Kennedy JN, Wang S et al (2019) Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis. JAMA - J Am Med Assoc 321:2003–2017. https://doi.org/10.1001/jama.2019.5791

    Article  CAS  Google Scholar 

  72. Cherney DZI, Rosenson RS, Lawler PR (2019) Atherosclerotic cardiovascular disease and chronic kidney disease: an emerging role for evolocumab? J Am Coll Cardiol 73:2971–2975. https://doi.org/10.1016/j.jacc.2019.03.514

    Article  PubMed  Google Scholar 

  73. Fine JP, Gray RJ (1999) A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc 94:496. https://doi.org/10.2307/2670170

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

PRL accepts full responsibility for the work and the conduct of the study, had access to the data, and controlled the decision to publish. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted. All authors meet ICMJE recommendations for authorship and have made substantial contributions to the concept or design of the work (LK, FA, EK, NA, LG, JM, BLF, DL, RS, NS, SV, AT, ME, BB, MF, MH, DK, DS, MD, LB, PL), acquisition or analysis of the data (LK, FA, EK, NA, LB, PL); interpretation of the data (all authors); drafted the work or revised it critically for important intellectual content (all authors); gave final approval of the version to be published (all authors).

Corresponding author

Correspondence to Patrick R. Lawler.

Ethics declarations

Conflicts of interest

PRL has received unrelated research funding from the Canadian Institutes of Health Research, the National Institutes of Health, the Peter Munk Cardiac Centre, the LifeArc Foundation, the Thistledown Foundation, and the Province of Ontario. He has received unrelated consulting honoraria from Novartis, Corrona, and Brigham and Women’s Hospital, as well as unrelated royalties from McGraw-Hill Publishing. FA is supported by a Vanier Canada Scholarship from the Canadian Institutes of Health Research. DCS holds operating grants from the Canadian Institutes of Health Research. MEF receives grant support from Amgen, Novartis, and Novo Nordisk. DSL is the Ted Rogers Chair in heart function outcomes at the University Health Network. DTK is supported by the Jack Tu Chair in Cardiovascular Outcomes Research at Sunnybrook Health Sciences Centre. No other relationships or activities that could appear to have influenced the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosyakovsky, L.B., Angriman, F., Katz, E. et al. Association between sepsis survivorship and long-term cardiovascular outcomes in adults: a systematic review and meta-analysis. Intensive Care Med 47, 931–942 (2021). https://doi.org/10.1007/s00134-021-06479-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-021-06479-y

Keywords

Navigation