Skip to main content

Advertisement

Log in

Hyperbaric oxygen therapy reduces the toll-like receptor signaling pathway in multiple organ failures

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

An Editorial Expression of Concern to this article was published on 14 February 2024

This article has been updated

Abstract

Purpose

Zymosan-induced generalized inflammation is the only experimental model that reproduces characteristics of human multiple organ dysfunction syndrome (MODS). Toll-like receptors (TLRs) are key components in innate immune responses and their signaling pathway is known to activate target genes such as nuclear factor-κB (NF-κB) and cytokines that are involved in inflammation and immune responses. We previously reported that hyperbaric oxygen (HBO) therapy is effective in the treatment of severe zymosan-induced inflammation in MODS. The aim of this study was to investigate the effect of HBO exposure on TLR2 and TLR4 signal transduction and organ dysfunction during MODS induced by zymosan in the rat.

Methods

Male Wistar rats were randomized into four groups and treated as follows: (1) saline solution (control); (2) zymosan; (3) HBO 4 and 11 h after zymosan injection; (4) HBO 4 and 11 h after saline solution injection. Zymosan-induced damage of the lungs, liver, and small intestine was evaluated using histology and biochemistry. The activation of the TLR signaling pathway was measured with Western blot, reverse transcriptase polymerase chain reaction analysis (RT-PCR), and immunohistochemistry.

Results

Zymosan induced a severe inflammatory response characterized by the activation of the TLR signaling pathway and by an organ dysfunction. HBO exposure significantly reduced the development of lung, liver, and intestine injury in our experimental model. It also significantly reduced the zymosan-induced expression of TLR2 and TLR4, NF-κB activation, and cytokine production.

Conclusions

Taken together, these results suggest that, by interfering with the TLR pathway, HBO treatment may exert a protective effect against tissue injury caused by zymosan-induced generalized inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Shayevitz JR, Miller C, Johnson KJ, Rodriguez JL (1995) Multiple organ dysfunction syndrome: end organ and systemic inflammatory response in a mouse model of nonseptic origin. Shock 4:389–396

    Article  PubMed  CAS  Google Scholar 

  2. Goris RJ, Boekholtz WK, van Bebber IP, Nuytinck JK, Schillings PH (1986) Multiple-organ failure and sepsis without bacteria. An experimental model. Arch Surg 121:897–901

    PubMed  CAS  Google Scholar 

  3. Ivanovska N, Kalfin R, Lazarova M, Dimitrova P (2007) Exogenous VIP limits zymosan-induced generalized inflammation (ZIGI) in mice. Immunol Lett 110:126–132

    Article  PubMed  CAS  Google Scholar 

  4. Malleo G, Mazzon E, Genovese T, Di Paola R, Muià C, Caminiti R, Esposito E, Di Bella P, Cuzzocrea S (2008) Etanercept reduces acute tissue injury and mortality associated to zymosan-induced multiple organ dysfunction syndrome. Shock 29:560–571

    PubMed  CAS  Google Scholar 

  5. Zarini S, Gijòn MA, Ransome AE, Murphy RC, Sala A (2009) Transcellular biosynthesis of cysteinyl leukotrienes in vivo during mouse peritoneal inflammation. Proc Natl Acad Sci U S A 106:8296–8301

    Article  PubMed  CAS  Google Scholar 

  6. Kolaczkowska E, Barteczko M, Plytycz B, Arnold B (2008) Role of lymphocytes in the course of murine zymosan-induced peritonitis. Inflamm Res 57:272–278

    Article  PubMed  CAS  Google Scholar 

  7. Cuzzocrea S, de Sarro G, Costantino G, Mazzon E, Laurà R, Ciriaco E, de Sarro A, Caputi AP (1999) Role of interleukin-6 in a non-septic shock model induced by zymosan. Eur cytokine Netw 10:191–203

    PubMed  CAS  Google Scholar 

  8. Vicente AM, Guillén MI, Habib A, Alcaraz MJ (2003) Beneficial effects of heme oxygenase-1 up-regulation in the development of experimental inflammation induced by zymosan. J Pharmacol Exp Ther 307:1030–1037

    Article  PubMed  CAS  Google Scholar 

  9. Wiser J, Alexis NE, Jiang Q, Wu W, Robinette C, Roubey R, Peden DB (2008) In vivo gamma-tocopherol supplementation decreases systemic oxidative stress and cytokine responses of human monocytes in normal and asthmatic subjects. Free Radic Biol Med 45:40–49

    Article  PubMed  CAS  Google Scholar 

  10. Cuzzocrea S, Costantino G, Mazzon E, Caputi AP (1999) Protective effect of N-acetylcysteine on multiple organ failure induced by zymosan in the rat. Crit Care Med 27:1524–1532

    Article  PubMed  CAS  Google Scholar 

  11. Ogawa Y, Tasaka S, Yamada W, Saito F, Hasegawa N, Miyasho T, Ishizaka A (2007) Role of toll-like receptor 4 in hyperoxia-induced lung inflammation in mice. Inflamm Res 56:334–338

    Article  PubMed  CAS  Google Scholar 

  12. Arancibia SA, Beltrán CJ, Aguirre IM, Silva P, Peralta AL, Malinarich F, Hermoso MA (2007) Toll-like receptors are key participants in innate immune responses. Biol Res 40:97–112

    Article  PubMed  CAS  Google Scholar 

  13. Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162:3749–3752

    PubMed  CAS  Google Scholar 

  14. Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11:443–451

    Article  PubMed  CAS  Google Scholar 

  15. Tsan MF, Gao Baochong (2007) Pathogen-associated molecular pattern contamination as putative endogenous ligands of toll-like receptors. J Endotoxin Res 13:6–14

    Article  PubMed  CAS  Google Scholar 

  16. Anderson KV (2000) Toll signalling pathways in the innate immune response. Curr Opin Immunol 12:13–19

    Article  PubMed  CAS  Google Scholar 

  17. Luongo C, Imperatore F, Cuzzocrea S, Filippelli A, Scafuro MA, Mangoni G, Portolano F, Rossi F (1998) Effects of hyperbaric oxygen exposure on a zymosan-induced shock model. Crit Care Med 26:1972–1976

    Article  PubMed  CAS  Google Scholar 

  18. Imperatore F, Cuzzocrea S, Luongo C, Liguori G, Scafuro A, De Angelis A, Rossi F, Caputi AP, Filippelli A (2004) Hyperbaric oxygen therapy prevents vascular derangement during zymosan-induced multiple-organ-failure syndrome. Intensive Care Med 30:1175–1181 (Comment in: Intensive Care Med 2004; 30:1011–1013)

    Article  PubMed  Google Scholar 

  19. Cuzzocrea S, Imperatore F, Costantino G, Luongo C, Mazzon E, Scafuro MA, Mangoni G, Caputi AP, Rossi F, Filippelli A (2000) Role of hyperbaric oxygen exposure in reduction of lipid peroxidation and in multiple organ failure induced by zymosan administration in the rat. Shock 13:197–203

    Article  PubMed  CAS  Google Scholar 

  20. Rogatsky GG, Shifrin EG, Mayevsky A (1999) Physiologic and biochemical monitoring during hyperbaric oxygenation: a review. Undersea Hyperb Med 26:111–122

    PubMed  CAS  Google Scholar 

  21. MacFarlane C, Cronje FJ, Benn CA (2000) Hyperbaric oxygen in trauma and surgical emergencies. J R Army Med Corps 146:185–190

    PubMed  CAS  Google Scholar 

  22. Larsson A, Engstrom M, Uusijarvi J, Kihlström L, Lind F, Mathiesen T (2008) Hyperbaric oxygen treatment of postoperative neurosurgical infections. Neurosurgery 62 (Suppl 2):652–671

    Google Scholar 

  23. Gesell LB (ed) (2008) Hyperbaric oxygen therapy indications, 12th edn. Undersea and Hyperbaric Medical Society, Durham NC

  24. Rodionov VN, Kosonogov LF (1994) The effect of hemosorption and hyperbaric oxygenation on the indices of hemodynamics and oxygen allowance in patients with septic shock. Anesteziol Reanimatol 2:45–47

    PubMed  Google Scholar 

  25. Zhidkov KP, Klechikov VZ, Bogatyr’ MN (1997) Experience in the treatment of severe forms of sepsis by extracorporeal therapy and hyperbaric oxygenation. Anesteziol Reanimatol 3:49–51

    PubMed  Google Scholar 

  26. Mizuno M, Ito Y, Hepburn N, Mizuno T, Noda Y, Yuzawa Y, Harris CL, Morgan BP, Matsuo S (2009) Zymosan, but not lipopolysaccharide, triggers severe and progressive peritoneal injury accompanied by complement activation in a rat peritonitis model. J Immunol 183:1403–1412

    Article  PubMed  CAS  Google Scholar 

  27. Cuzzocrea S, Chatterjee PK, Mazzon E, Serraino I, Dugo L, Centorrino T, Barbera A, Ciccolo A, Fulia F, McDonald MC, Caputi AP, Thiemermann C (2002) Effects of calpain inhibitor I on multiple organ failure induced by zymosan in the rat. Crit Care Med 30:2284–2294

    Article  PubMed  CAS  Google Scholar 

  28. Ikeda Y, Adachi Y, Ishii T, Miura N, Tamura H, Ohno N (2008) Dissociation of Toll-like receptor 2-mediated innate immune response to Zymosan by organic solvent-treatment without loss of Dectin-1 reactivity. Biol Pharm Bull 31:13–18

    Article  PubMed  CAS  Google Scholar 

  29. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088

    Article  PubMed  CAS  Google Scholar 

  30. Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D (1999) Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol 163:1–5

    PubMed  CAS  Google Scholar 

  31. van Aubel RA, Keestra AM, Krooshoop DJ, van Eden W, van Putten JP (2007) Ligand-induced differential cross-regulation of Toll-like receptors 2, 4 and 5 in intestinal epithelial cells. Mol Immunol 44:3702–3714

    Article  PubMed  Google Scholar 

  32. Ghosh TK, Mickelson DJ, Solberg JC, Lipson KE, Inglefield JR, Alkan SS (2007) TLR-TLR cross talk in human PBMC resulting in synergistic and antagonistic regulation of type-1 and 2 interferons, IL-12 and TNF-alpha. Int Immunopharmacol 7:1111–1121

    Article  PubMed  CAS  Google Scholar 

  33. Ostrowski RP, Graupner G, Titova E, Zhang J, Chiu J, Dach N, Corleone D, Tang J, Zhang JH (2008) The hyperbaric oxygen preconditioning-induced brain protection is mediated by a reduction of early apoptosis after transient global cerebral ischemia. Neurobiol Dis 29:1–13

    Article  PubMed  CAS  Google Scholar 

  34. Buras JA, Holt D, Orlow D, Belikoff B, Pavlides S, Reenstra WR (2006) Hyperbaric oxygen protects from sepsis mortality via an interleukin-10-dependent mechanism. Crit Care Med 34:2624–2629

    Article  PubMed  CAS  Google Scholar 

  35. Yu X, Li YG, He XW, Li XR, Din BN, Gan Y, Xu M (2009) Hyperbaric oxygen reduces inflammatory response in acute pancreatitis by inhibiting NF-kappaB activation. Eur Surg Res 42:130–135

    Article  PubMed  CAS  Google Scholar 

  36. Sen R, Baltimore D (1986) Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell 47:921–928

    Article  PubMed  CAS  Google Scholar 

  37. Carmody RJ, Chen YH (2007) Nuclear factor-kappaB: activation and regulation during toll-like receptor signaling. Cell Mol Immunol 4:31–41

    PubMed  CAS  Google Scholar 

  38. Volman TJ, Hendriks T, Verhofstad AA, Kullberg BJ, Goris RJ (2002) Improved survival of TNF-deficient mice during the zymosan-induced multiple organ dysfunction syndrome. Shock 17:468–472

    Article  PubMed  Google Scholar 

  39. Penido C, Conte FP, Chagas MS, Rodrigues CA, Pereira JF, Henriques MG (2006) Antiinflammatory effects of natural tetranortriterpenoids isolated from Carapa guianensis Aublet on zymosan-induced arthritis in mice. Inflamm Res 55:457–464

    Article  PubMed  CAS  Google Scholar 

  40. Sato M, Sano H, Iwaki D, Kudo K, Konishi M, Takahashi H, Takahashi T, Imaizumi H, Asai Y, Kuroki Y (2003) Direct binding of toll-like receptor 2 to zymosan, and zymosan-induced NF-κB activation and TNF-α secretion are down-regulated by lung collectin surfactant protein A. J Immunol 171:417–425

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by a grant from the Undersea and Hyperbaric Research Committee. We thank Jean Ann Gilder for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Rinaldi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIF 32 kb)

Supplementary material 2 (DOC 260 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rinaldi, B., Cuzzocrea, S., Donniacuo, M. et al. Hyperbaric oxygen therapy reduces the toll-like receptor signaling pathway in multiple organ failures. Intensive Care Med 37, 1110–1119 (2011). https://doi.org/10.1007/s00134-011-2241-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-011-2241-1

Keywords

Navigation