Skip to main content
Log in

Hyperbaric oxygen therapy prevents vascular derangement during zymosan-induced multiple-organ-failure syndrome

  • Experimental
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

This study investigated the effects of hyperbaric oxygen (HBO) therapy on the cardiovascular alteration (e.g. mean arterial pressure, vascular reactivity of thoracic aorta rings changes) caused by zymosan in rats.

Design

Rats.

Setting

University research laboratory.

Intervention and measurements

We investigated the effects of HBO therapy (2 ATA at the fourth and eleventh hours after study onset) on the cardiovascular alteration caused by zymosan (500 mg/kg, administered i.p. as a suspension in saline) in rats. Cardiovascular alterations were assessed 18 h after administration of zymosan and/or HBO therapy.

Results

Treatment of rats with HBO therapy attenuated the vasoplegic response to zymosan. In fact, the analysis of arterial pressure curves revealed no signs of vasoplegic shock. The aorta rings of animals treated with zymosan and HBO had a significantly increased contraction to norepinephrine (NE) and endothelin-1 (ET-1) and dilation to acetylcholine (ACh) compared with the zymosan group. The HBO therapy also attenuated the increase of malondialdehyde (MDA) levels caused by zymosan in the aorta. Immunohistochemical analysis for nitrotyrosine and for iNOS revealed positive staining in the aorta from zymosan-treated rats. The degree of staining for nitrotyrosine and iNOS was markedly reduced in tissue sections obtained from zymosan-rats treated with HBO therapy.

Conclusion

This study provides the first evidence that HBO therapy attenuates the degree of zymosan-induced cardiovascular derangement in the rat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–C
Fig. 3A–C
Fig. 4A–D

Similar content being viewed by others

References

  1. Cohen IL (1993) Definition of sepsis and organ failure. The ACCP/SCCM Consensus Conference Committee Report. Chest 103:656–666

    CAS  Google Scholar 

  2. Bone RC (1991) The pathogenesis of sepsis. Ann Med Int 115:457–469

    CAS  Google Scholar 

  3. Hunt BJ (1998) Endothelial cell activation. Br Med J 316:1328–1329

    CAS  Google Scholar 

  4. Damas J, Remacle-Volon G, Bourdon V (1993) Platelet–activating factor and vascular effects of zymosan in rats. Eur J Pharmacol 231:231–236

    Article  CAS  PubMed  Google Scholar 

  5. Mainous M, Patrick T, Rodney D (1991) Studies of route, magnitude and time course of bacterial translocation in a model of systemic inflammation. Arch Surg 126:33–39

    CAS  PubMed  Google Scholar 

  6. Cuzzocrea S, Filippelli A, Zingarelli B, Falciani M, Caputi AP, Rossi F (1997) Role of nitric oxide in a non-septic shock model induced by zymosan in the rat. Shock 7:351–357

    PubMed  Google Scholar 

  7. Asmuth EJU von, Maessen JG, Van Der Linden CJ (1990) Tumor necrosis factor alpha (TNFα) and interleukin 6 in zymosan-induced shock model. Scand J Immunol 32:313–319

    PubMed  Google Scholar 

  8. Luongo C, Imperatore F, Cuzzocrea S (1998) Effects of hyperbaric oxygen exposure on zymosan-induced shock model. Crit Care Med 26:1972–1976

    Article  CAS  PubMed  Google Scholar 

  9. Rogatsky GG, Shifrin EG, Mayevsky A (1999) Physiologic and biochemical monitoring during hyperbaric oxygenation: a review. Undersea Hyperb Med 26:111–122

    CAS  PubMed  Google Scholar 

  10. Larsson A, Engstrom M, Uusijarvi J, Kihlstrom L, Lind F, Mathiesen T (2002) Hyperbaric oxygen treatment of postoperative neurosurgical infections. Neurosurgery. 50:287–295

    Google Scholar 

  11. MacFarlane C, Cronje FJ, Benn CA (2000) Hyperbaric oxygen in trauma and surgical emergencies. J R Army Med Corps 146:185–190

    CAS  PubMed  Google Scholar 

  12. Kovskin VB, Balashov NV, Makarov FN (1995) Design and reactivity of large arterial walls in monkeys after prolonged hyperbaria. Dokl Akad Nauk 340:559–562

    PubMed  Google Scholar 

  13. Luongo C, Imperatore F, Matera MG (1999) Effect of hyperbaric oxygen therapy in experimental subcutaneous and pulmonary infections due to Pseudomonas aeruginosa. Under Hyperb Med 26:21–25

    CAS  Google Scholar 

  14. Cuzzocrea S, Persichini T, Dugo L, Colasanti M, Musci G. (2003) Copper induces type II nitric oxide synthase in vivo. Free Radic Biol Med. 34:1253–1262

    Google Scholar 

  15. Snedecor GW, Cochran WG (1976) Statistical methods, 6th edn. The Iowa State University Press, Ames, Iowa, pp 549–561

  16. Stoclet JC, Muller B, Gyorgy K, Andriantsiothaina R, Kleschyov AL (1999) The inducible nitric oxide synthase in vascular and cardiac tissue. Eur J Pharmacol 375:139–155

    Article  CAS  PubMed  Google Scholar 

  17. Thiemermann C (1997) Nitric oxide and septic shock. Gen Pharmacol 29:159–166

    CAS  PubMed  Google Scholar 

  18. McCord J (1993) Oxygen-derived free radicals. New Horizons 1:70–76

    CAS  PubMed  Google Scholar 

  19. Szabó C, Thiemermann C (1994) Invited opinion: Role of nitric oxide in haemorrhagic, traumatic and anaphylactic shock and in thermal injury. Shock 2:145–155

    PubMed  Google Scholar 

  20. Szabó C (1996) The role of peroxynitrite in the pathophysiology of shock, inflammation and ischemia-reperfusion injury. Shock 6:79–88

    PubMed  Google Scholar 

  21. Cuzzocrea S, Zingarelli B, Sautebin L, Rizzo A, Crisafulli C, Campo GM, Costantino G, Calapai G, Nava F, Rosa M di, Caputi AP (1997) Multiple organ failure following zymosan-induced peritonitis is mediated by nitric oxide. Shock 4:268–275

    Google Scholar 

  22. Demling R, Nayak U, Ikegami K, LaLonde C (1994) Comparison between lung and liver peroxidation and mortality after zymosan peritonitis in the rats. Shock 2:222–227

    CAS  PubMed  Google Scholar 

  23. Cuzzocrea S, Zingarelli B, Calapai G, Nava F, Caputi AP (1997) Zymosan-activated plasma induces paw oedema by nitric oxide and prostaglandin production. Life Sci 60:215–220

    CAS  PubMed  Google Scholar 

  24. Lancaster JR (1992) Nitric oxide in cells. Am Sci 80:248–255

    Google Scholar 

  25. Rao TS, Currie JL, Shaffer AF, Isakson PC (1994) In vivo characterization of zymosan-induced mouse peritoneal inflammation. J Pharmacol Exp Ther 269:917–925

    CAS  PubMed  Google Scholar 

  26. Cuzzocrea S, Imperatore F, Costantino G, Luongo C, Mazzon E, Scafuro MA, Mangoni G, Caputi AP, Rossi F, Filippelli A (2000) Role of hyperbaric oxygen exposure in reduction of lipid peroxidation and in multiple organ failure induced by zymosan administration in the rat. Shock 13:197–203

    CAS  PubMed  Google Scholar 

  27. Teixeira TJ, Williams PG, Hellewell PG (1993) Role of prostaglandins and nitric oxide in acute inflammatory reactions in guinea-pig skin. Br J Pharmacol 110:416–422

    CAS  PubMed  Google Scholar 

  28. Xia Y, Dawson VL, Dawson TM, Snyder SH, Zweier JL (1996) Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury. Proc Natl Acad Sci USA 93:6770–6774

    CAS  PubMed  Google Scholar 

  29. Salvemini D, Cuzzocrea S (2002) Oxidative stress in septic shock and disseminated intravascular coagulation. Free Radic Biol Med 33:1173–1185

    Article  CAS  PubMed  Google Scholar 

  30. Cuzzocrea S, Riley DP, Caputi AP, Salvemini D (2001) Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev 53:135–159

    CAS  PubMed  Google Scholar 

  31. Villa LM, Salas E, Darley-Usmar M, Radomski MEW, Moncada S (1994) Peroxynitrite induces both vasodilatation and impaired vascular relaxation in the isolated perfused rat heart. Proc Natl Acad Sci USA 91:12383–12387

    CAS  PubMed  Google Scholar 

  32. Elliott SJ (1996) Peroxynitrite modulates receptor-activated Ca2+ signaling in vascular endothelial cells. Am J Physiol 270:L954–L961

    CAS  PubMed  Google Scholar 

  33. Lahat N, Bitterman H, Yaniv N, Kinarty A, Bitterman N (1995) Exposure to hyperbaric oxygen induces tumor necrosis factor-alpha (TNF alpha) secretion from rat macrophages. Clin Exp Immunol 102:655–659

    CAS  PubMed  Google Scholar 

  34. Beckman JS (1996) Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol 9:836–844

    Article  CAS  PubMed  Google Scholar 

  35. Szabó C, Salzman AL, Ischiropoulos H (1995) Peroxynitrite-mediated oxidation of dihydrorhodamine 123 occurs in early stages of endotoxic and hemorrhagic shock and ischemia-reperfusion injury. FEBS Lett 372:229–232

    Article  PubMed  Google Scholar 

  36. Pelaia P, Rocco M, Blasi RA de, Spadetta G, Alampi D, Araimo FS, Nicolucci S (1995) Assesssment of lipid peroxidation in hyperbaric oxygen therapy. Protective role of N-acetylcysteine. Minerva Anestesiol 61:133–139

    CAS  PubMed  Google Scholar 

  37. Buras J. (2000) Basic mechanisms of hyperbaric oxygen in the treatment of ischemia-reperfusion injury. Int Anesthesiol Clin Winter 38:91–109

    CAS  Google Scholar 

  38. Balentine JD (1973) Selective vulnerability of the central nervous system to hyperbaric oxygen. Adv Exp Med Biol 37A: 293–298

    CAS  PubMed  Google Scholar 

  39. Clark JM (1982) Oxygen toxicity. In: Bennett PB, Elliot DH (eds) Physiology and medicine of diving, 3rd edn. Bailliere, Tindal and Cox, London, pp 200–238

  40. Mayevsky A (1984) Invited review: brain oxygen toxicity. In: Bachrach AJ, Matzen MM (eds) Undersea physiology, vol 8. Undersea Medical Society, Bethesda, Maryland, pp 69–89

  41. Piantadosi CA, Tatro LG (1990) Regional H2O2 concentration in rat brain after hyperoxic convulsions. J Appl Physiol 69:1761–1766

    Google Scholar 

Download references

Acknowledgements

This study has been granted from the Undersea and Hyperbaric Medical Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Cuzzocrea.

Additional information

An editorial regarding this article can be found in the same issue (http://dx.doi.org/10.1007/s00134-004-2211-y)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imperatore, F., Cuzzocrea, S., Luongo, C. et al. Hyperbaric oxygen therapy prevents vascular derangement during zymosan-induced multiple-organ-failure syndrome. Intensive Care Med 30, 1175–1181 (2004). https://doi.org/10.1007/s00134-003-2138-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-003-2138-8

Keywords

Navigation