Skip to main content
Log in

Influence of lung collapse distribution on the physiologic response to recruitment maneuvers during noninvasive continuous positive airway pressure

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

Noninvasive continuous positive airway pressure (n-CPAP) has been proposed for the treatment of hypoxemic acute respiratory failure (h-ARF). Recruitment maneuvers were shown to improve oxygenation, i.e., the ratio of arterial oxygen tension to inspiratory oxygen fraction (PaO2/FiO2), during either invasive mechanical ventilation, and n-CPAP, with a response depending on the distribution of lung collapse. We hypothesized that, during n-CPAP, early h-ARF patients with bilateral (BL) distribution of lung involvement would benefit from recruitment maneuvers more than those with unilateral (UL) involvement.

Methods

To perform a recruitment maneuver, once a minute we increased the pressure applied to the airway from 10 cmH2O to 25 cmH2O for 8 s (SIGH). We enrolled 24 patients with h-ARF (12 BL and 12 UL) who underwent four consecutive trials: (1) 30 min breathing through a Venturi mask (VMASK), (2) 1 h n-CPAP (n-CPAP1), (3) 1 h n-CPAP plus SIGH (n-CPAPSIGH), and (4) 1 h n-CPAP (n-CPAP2).

Results

Compared to VMASK, n-CPAP at 10 cmH2O delivered via a helmet, increased PaO2/FiO2 and decreased dyspnea in both BL and UL; furthermore, it reduced the respiratory rate and brought PaCO2 up to normal in BL only. Compared to n-CPAP, n-CPAPSIGH significantly improved PaO2/FiO2 in BL (225 ± 88 vs. 308 ± 105, respectively), whereas it produced no further improvement in PaO2/FiO2 in UL (232 ± 72 vs. 231 ± 77, respectively). SIGH did not affect hemodynamics in both groups.

Conclusions

Compared to n-CPAP, n-CPAPSIGH further improved arterial oxygenation in BL patients, whereas it produced no additional benefit in those with UL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lindner KH, Lotz P, Ahnefeld FW (1987) Continuous positive airway pressure effect on functional residual capacity, vital capacity and its subdivisions. Chest 92:66–70

    Article  PubMed  CAS  Google Scholar 

  2. Lenique F, Habis M, Lofaso F, Dubois-Rande JL, Harf A, Brochard L (1997) Ventilatory and hemodynamic effects of continuous positive airway pressure in left heart failure. Am J Respir Crit Care Med 155:500–505

    PubMed  CAS  Google Scholar 

  3. Cabrini L, Idone C, Colombo S, Monti G, Bergonzi PC, Landoni G, Salaris D, Leggieri C, Torri G (2009) Medical emergency team and non-invasive ventilation outside ICU for acute respiratory failure. Intensive Care Med 35:339–343

    Article  PubMed  Google Scholar 

  4. Foti G, Sangalli F, Berra L, Sironi S, Cazzaniga M, Rossi GP, Bellani G, Pesenti A (2009) Is helmet CPAP first line pre-hospital treatment of presumed severe acute pulmonary edema? Intensive Care Med 35:656–662

    Article  PubMed  Google Scholar 

  5. Gray AJ, Goodacre S, Newby DE, Masson MA, Sampson F, Dixon S, Crane S, Elliott M, Nicholl J (2009) A multicentre randomised controlled trial of the use of continuous positive airway pressure and non-invasive positive pressure ventilation in the early treatment of patients presenting to the emergency department with severe acute cardiogenic pulmonary oedema: the 3CPO trial. Health Technol Assess 13:1–106

    CAS  Google Scholar 

  6. Principi T, Pantanetti S, Catani F, Elisei D, Gabbanelli V, Pelaia P, Leoni P (2004) Noninvasive continuous positive airway pressure delivered by helmet in hematological malignancy patients with hypoxemic acute respiratory failure. Intensive Care Med 30:147–150

    Article  PubMed  Google Scholar 

  7. Templier F, Dolveck F, Baer M, Chauvin M, Fletcher D (2003) ‘Boussignac’ continuous positive airway pressure system: practical use in a prehospital medical care unit. Eur J Emerg Med 10:87–93

    Article  PubMed  Google Scholar 

  8. Nava S, Navalesi P, Gregoretti C (2009) Interfaces and humidification for noninvasive mechanical ventilation. Respir Care 54:71–84

    PubMed  Google Scholar 

  9. Tonnelier JM, Prat G, Nowak E, Goetghebeur D, Renault A, Boles JM, L’Her E (2003) Noninvasive continuous positive airway pressure ventilation using a new helmet interface: a case-control prospective pilot study. Intensive Care Med 29:2077–2080

    Article  PubMed  Google Scholar 

  10. Gray A, Goodacre S, Newby DE, Masson M, Sampson F, Nicholl J (2008) Noninvasive ventilation in acute cardiogenic pulmonary edema. N Engl J Med 359:142–151

    Article  PubMed  CAS  Google Scholar 

  11. Masip J, Roque M, Sanchez B, Fernandez R, Subirana M, Exposito JA (2005) Noninvasive ventilation in acute cardiogenic pulmonary edema: systematic review and meta-analysis. JAMA 294:3124–3130

    Article  PubMed  CAS  Google Scholar 

  12. Mehta S, Al-Hashim AH, Keenan SP (2009) Noninvasive ventilation in patients with acute cardiogenic pulmonary edema. Respir Care 54:186–195

    PubMed  Google Scholar 

  13. Carlsson C, Sonden B, Thylen U (1981) Can postoperative continuous positive airway pressure (CPAP) prevent pulmonary complications after abdominal surgery? Intensive Care Med 7:225–229

    Article  PubMed  CAS  Google Scholar 

  14. Ricksten SE, Bengtsson A, Soderberg C, Thorden M, Kvist H (1986) Effects of periodic positive airway pressure by mask on postoperative pulmonary function. Chest 89:774–781

    Article  PubMed  CAS  Google Scholar 

  15. Squadrone V, Coha M, Cerutti E, Schellino MM, Biolino P, Occella P, Belloni G, Vilianis G, Fiore G, Cavallo F, Ranieri VM (2005) Continuous positive airway pressure for treatment of postoperative hypoxemia: a randomized controlled trial. JAMA 293:589–595

    Article  PubMed  CAS  Google Scholar 

  16. Delclaux C, L’Her E, Alberti C, Mancebo J, Abroug F, Conti G, Guerin C, Schortgen F, Lefort Y, Antonelli M, Lepage E, Lemaire F, Brochard L (2000) Treatment of acute hypoxemic nonhypercapnic respiratory insufficiency with continuous positive airway pressure delivered by a face mask: a randomized controlled trial. JAMA 284:2352–2360

    Article  PubMed  CAS  Google Scholar 

  17. L’Her E, Deye N, Lellouche F, Taille S, Demoule A, Fraticelli A, Mancebo J, Brochard L (2005) Physiologic effects of noninvasive ventilation during acute lung injury. Am J Respir Crit Care Med 172:1112–1118

    Article  PubMed  Google Scholar 

  18. Pelosi P, Cadringher P, Bottino N, Panigada M, Carrieri F, Riva E, Lissoni A, Gattinoni L (1999) Sigh in acute respiratory distress syndrome. Am J Respir Crit Care Med 159:872–880

    PubMed  CAS  Google Scholar 

  19. Patroniti N, Foti G, Cortinovis B, Maggioni E, Bigatello LM, Cereda M, Pesenti A (2002) Sigh improves gas exchange and lung volume in patients with acute respiratory distress syndrome undergoing pressure support ventilation. Anesthesiology 96:788–794

    Article  PubMed  Google Scholar 

  20. Isgro S, Zanella A, Sala C, Grasselli G, Foti G, Pesenti A, Patroniti N (2010) Continuous flow biphasic positive airway pressure by helmet in patients with acute hypoxic respiratory failure: effect on oxygenation. Intensive Care Med 36:1688–1694

    Article  PubMed  Google Scholar 

  21. Constantin JM, Grasso S, Chanques G, Aufort S, Futier E, Sebbane M, Jung B, Gallix B, Bazin JE, Rouby JJ, Jaber S (2010) Lung morphology predicts response to recruitment maneuver in patients with acute respiratory distress syndrome. Crit Care Med 38:1108–1117

    Article  PubMed  Google Scholar 

  22. Aviram G, Bar-Shai A, Sosna J, Rogowski O, Rosen G, Weinstein I, Steinvil A, Zimmerman O (2010) H1N1 influenza: initial chest radiographic findings in helping predict patient outcome. Radiology 255:252–259

    Article  PubMed  Google Scholar 

  23. Chong S, Lee KS, Kim TS, Chung MJ, Chung MP, Han J (2006) Adenovirus pneumonia in adults: radiographic and high-resolution CT findings in five patients. AJR Am J Roentgenol 186:1288–1293

    Article  PubMed  Google Scholar 

  24. Hansell DM, Bankier AA, MacMahon H, McLoud TC, Muller NL, Remy J (2008) Fleischner Society: glossary of terms for thoracic imaging. Radiology 246:697–722

    Article  PubMed  Google Scholar 

  25. Aitken RC (1969) Measurement of feelings using visual analogue scales. Proc R Soc Med 62:989–993

    PubMed  CAS  Google Scholar 

  26. Fan E, Wilcox ME, Brower RG, Stewart TE, Mehta S, Lapinsky SE, Meade MO, Ferguson ND (2008) Recruitment maneuvers for acute lung injury: a systematic review. Am J Respir Crit Care Med 178:1156–1163

    Article  PubMed  Google Scholar 

  27. Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) APACHE II: a severity of disease classification system. Crit Care Med 13:818–829

    Article  PubMed  CAS  Google Scholar 

  28. Murray JF, Matthay MA, Luce JM, Flick MR (1988) An expanded definition of the adult respiratory distress syndrome. Am Rev Respir Dis 138:720–723

    PubMed  CAS  Google Scholar 

  29. Rothen HU, Sporre B, Engberg G, Wegenius G, Hedenstierna G (1993) Re-expansion of atelectasis during general anaesthesia: a computed tomography study. Br J Anaesth 71:788–795

    Article  PubMed  CAS  Google Scholar 

  30. Winans CS (1972) The pharyngoesophageal closure mechanism: a manometric study. Gastroenterology 63:768–777

    PubMed  CAS  Google Scholar 

  31. Ho-Tai LM, Devitt JH, Noel AG, O’Donnell MP (1998) Gas leak and gastric insufflation during controlled ventilation: face mask versus laryngeal mask airway. Can J Anaesth 45:206–211

    Article  PubMed  CAS  Google Scholar 

  32. Vyas H, Milner AD, Hopkin IE (1983) Face mask resuscitation: does it lead to gastric distension? Arch Dis Child 58:373–375

    Article  PubMed  CAS  Google Scholar 

  33. Brochard L, Isabey D, Piquet J, Amaro P, Mancebo J, Messadi AA, Brun-Buisson C, Rauss A, Lemaire F, Harf A (1990) Reversal of acute exacerbations of chronic obstructive lung disease by inspiratory assistance with a face mask. N Engl J Med 323:1523–1530

    Article  PubMed  CAS  Google Scholar 

  34. Gattinoni L, Caironi P, Cressoni M, Chiumello D, Ranieri VM, Quintel M, Russo S, Patroniti N, Cornejo R, Bugedo G (2006) Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 354:1775–1786

    Article  PubMed  CAS  Google Scholar 

  35. Grasso S, Stripoli T, De MM, Bruno F, Moschetta M, Angelelli G, Munno I, Ruggiero V, Anaclerio R, Cafarelli A, Driessen B, Fiore T (2007) ARDSnet ventilatory protocol and alveolar hyperinflation: role of positive end-expiratory pressure. Am J Respir Crit Care Med 176:761–767

    Article  PubMed  Google Scholar 

  36. Vieira SR, Puybasset L, Lu Q, Richecoeur J, Cluzel P, Coriat P, Rouby JJ (1999) A scanographic assessment of pulmonary morphology in acute lung injury. Significance of the lower inflection point detected on the lung pressure-volume curve. Am J Respir Crit Care Med 159:1612–1623

    PubMed  CAS  Google Scholar 

  37. Pesenti A, Rossi N, Calori A, Foti G, Rossi GP (1993) Effects of short-term oxygenation changes on acute lung injury patients undergoing pressure support ventilation. Chest 103:1185–1189

    Article  PubMed  CAS  Google Scholar 

  38. Cereda M, Foti G, Marcora B, Gili M, Giacomini M, Sparacino ME, Pesenti A (2000) Pressure support ventilation in patients with acute lung injury. Crit Care Med 28:1269–1275

    Article  PubMed  CAS  Google Scholar 

  39. Jones HA, Turner SL, Hughes JM (1984) Performance of the large-reservoir oxygen mask (Ventimask). Lancet 1:1427–1431

    Article  PubMed  CAS  Google Scholar 

  40. Antonelli M, Conti G, Bufi M, Costa MG, Lappa A, Rocco M, Gasparetto A, Meduri GU (2000) Noninvasive ventilation for treatment of acute respiratory failure in patients undergoing solid organ transplantation: a randomized trial. JAMA 283:235–241

    Article  PubMed  CAS  Google Scholar 

  41. Antonelli M, Conti G, Rocco M, Arcangeli A, Cavaliere F, Proietti R, Meduri GU (2002) Noninvasive positive-pressure ventilation vs. conventional oxygen supplementation in hypoxemic patients undergoing diagnostic bronchoscopy. Chest 121:1149–1154

    Article  PubMed  Google Scholar 

  42. Rouby JJ, Puybasset L, Nieszkowska A, Lu Q (2003) Acute respiratory distress syndrome: lessons from computed tomography of the whole lung. Crit Care Med 31:S285–S295

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all the physicians and nurses of the Intensive Care Unit of the Maggiore della Carità Hospital, Novara, Italy, without whose help and dedication this work could not have been possible. This work has not been funded by any external source. TwinPAP® was kindly provided by StarMed, Mirandola, Modena, Italy. The preliminary results of this study were presented at the 2009 meeting of the European Society of Intensive Care Medicine, Vienna.

Conflict of interest

GC, RV, ET, FD, DC, CB, FDC, and SMM have no conflicts of interest to disclose. PN is contributing to the development of a new interface whose license for patent belongs to Starmed S.p.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Navalesi.

Additional information

G. Cammarota and R. Vaschetto equally contributed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 55 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cammarota, G., Vaschetto, R., Turucz, E. et al. Influence of lung collapse distribution on the physiologic response to recruitment maneuvers during noninvasive continuous positive airway pressure. Intensive Care Med 37, 1095–1102 (2011). https://doi.org/10.1007/s00134-011-2239-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-011-2239-8

Keywords

Navigation