Skip to main content

Advertisement

Log in

Chondrale und osteochondrale Defekte

Darstellung mittels bildgebender Verfahren

Chondral and osteochondral defects

Representation by imaging methods

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Die hochauflösende morphologische Bildgebung von chondralen und osteochondralen Läsionen ist heutzutage die Domäne der Magnetresonanztomographie. Weitere bildgebende Verfahren, wie die konventionelle Röntgendiagnostik, die Computertomographie, die Sonographie und die optische Kohärenztomographie, werden lediglich ergänzend in der Abklärung von Knorpelpathologien eingesetzt und spielen eine entsprechend untergeordnete Rolle. Der vorliegende Beitrag diskutiert klinisch-diagnostische Aspekte der Knorpelbildgebung. Es wird der aktuelle klinische und wissenschaftliche Stand der Diagnostik von Knorpelpathologien in Bezug auf die Grundlagen, Anforderungen, Techniken und die Bildinterpretation dargestellt. Darüber hinaus werden aktuelle technische Neuerungen, insbesondere funktionelle MRT-Techniken, die mittel- bis langfristig Anwendung in der Klinik finden können, in ihren Grundlagen erörtert.

Abstract

Morphological imaging of cartilage at high resolution allows the differentiation of chondral and osteochondral lesions. Nowadays, magnetic resonance imaging is the principal diagnostic tool in the assessment of cartilage structure and composition. Conventional radiography, computed tomography, ultrasound or optical coherence tomography are adjunct diagnostic modalities in the assessment of cartilage pathologies. The present article discusses the up-to-date diagnostic practice of cartilage imaging in terms of its scientific basis and current clinical status, requirements, techniques and image interpretation. Innovations in the field such as functional MRI are discussed as well due to their mid- to long-term clinical perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Abbreviations

ACT:

Autologe Chondrozytentransplantation

AMIC:

Autologe matrixinduzierte Chondrogenese

CT:

Computertomographie

dGEMRIC:

„Delayed gadolinium-enhanced MRI of cartilage“

DTPA:

Diethylentriaminpentaessigsäure

gagCEST:

„Glycosaminoglycan chemical exchange-dependent saturation transfer“

ICRS:

International Cartilage Repair Society

MACT:

Matrixinduzierte autologe Chondrozytentransplantation

MRT:

Magnetresonanztomographie

OCT:

Optische Kohärenztomographie

SPIR:

„Spectral presaturation with inversion recovery“

Literatur

  1. Akella SV, Regatte RR, Gougoutas AJ et al (2001) Proteoglycan-induced changes in T1rho-relaxation of articular cartilage at 4 T. Magn Reson Med 46:419–423

    Article  CAS  PubMed  Google Scholar 

  2. Akizuki S, Mow VC, Muller F et al (1987) Tensile properties of human knee joint cartilage. II. Correlations between weight bearing and tissue pathology and the kinetics of swelling. J Orthop Res 5:173–186

    Article  CAS  PubMed  Google Scholar 

  3. Ayral X, Pickering EH, Woodworth TG et al (2005) Synovitis: a potential predictive factor of structural progression of medial tibiofemoral knee osteoarthritis – results of a 1 year longitudinal arthroscopic study in 422 patients. Osteoarthr Cartil 13:361–367

    Article  CAS  PubMed  Google Scholar 

  4. Brill N, Riedel J, Rath B et al (2015) Optical coherence tomography-based parameterization and quantification of articular cartilage surface integrity. Biomed Opt Express 6:2398–2411

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brill N, Wirtz M, Merhof D et al (2016) Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration. J Biomed Opt 21:76013

    Article  PubMed  Google Scholar 

  6. Brismar BH, Wredmark T, Movin T et al (2002) Observer reliability in the arthroscopic classification of osteoarthritis of the knee. J Bone Joint Surg Br 84:42–47

    Article  CAS  PubMed  Google Scholar 

  7. Gemeinsamer Bundesausschuss (2015) Beschluss des gemeinsamen Bundesausschusses: Arthroskopie des Kniegelenks bei Gonarthrose vom 27.11.2015. http://g-ba.de

    Google Scholar 

  8. Cameron ML, Briggs KK, Steadman JR (2003) Reproducibility and reliability of the outerbridge classification for grading chondral lesions of the knee arthroscopically. Am J Sports Med 31:83–86

    Article  PubMed  Google Scholar 

  9. Changoor A, Nelea M, Methot S et al (2011) Structural characteristics of the collagen network in human normal, degraded and repair articular cartilages observed in polarized light and scanning electron microscopies. Osteoarthr Cartil 19:1458–1468

    Article  CAS  PubMed  Google Scholar 

  10. Chu CR, Lin D, Geisler JL et al (2004) Arthroscopic microscopy of articular cartilage using optical coherence tomography. Am J Sports Med 32:699–709

    Article  PubMed  Google Scholar 

  11. Chu CR, Williams A, Tolliver D et al (2010) Clinical optical coherence tomography of early articular cartilage degeneration in patients with degenerative meniscal tears. Arthritis Rheum 62:1412–1420

    Article  PubMed  PubMed Central  Google Scholar 

  12. Conrozier T, Lequesne M, Favret H et al (2001) Measurement of the radiological hip joint space width. An evaluation of various methods of measurement. Osteoarthr Cartil 9:281–286

    Article  CAS  PubMed  Google Scholar 

  13. Cooper C, Snow S, Mcalindon TE et al (2000) Risk factors for the incidence and progression of radiographic knee osteoarthritis. Arthritis Rheum 43:995–1000

    Article  CAS  PubMed  Google Scholar 

  14. Curl WW, Krome J, Gordon ES et al (1997) Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 13:456–460

    Article  CAS  PubMed  Google Scholar 

  15. Duncan ST, Khazzam MS, Burnham JM et al (2015) Sensitivity of standing radiographs to detect knee arthritis: a systematic review of Level I studies. Arthroscopy 31:321–328

    Article  PubMed  Google Scholar 

  16. Duvvuri U, Kudchodkar S, Reddy R et al (2002) T(1rho) relaxation can assess longitudinal proteoglycan loss from articular cartilage in vitro. Osteoarthr Cartil 10:838–844

    Article  CAS  PubMed  Google Scholar 

  17. Franz T, Hasler EM, Hagg R et al (2001) In situ compressive stiffness, biochemical composition, and structural integrity of articular cartilage of the human knee joint. Osteoarthr Cartil 9:582–592

    Article  CAS  PubMed  Google Scholar 

  18. Gossec L, Jordan JM, Mazzuca SA et al (2008) Comparative evaluation of three semi-quantitative radiographic grading techniques for knee osteoarthritis in terms of validity and reproducibility in 1759 X‑rays: report of the OARSI-OMERACT task force. Osteoarthr Cartil 16:742–748

    Article  CAS  PubMed  Google Scholar 

  19. Guermazi A, Alizai H, Crema MD et al (2015) Compositional MRI techniques for evaluation of cartilage degeneration in osteoarthritis. Osteoarthr Cartil 23:1639–1653

    Article  CAS  PubMed  Google Scholar 

  20. Guermazi A, Niu J, Hayashi D et al (2012) Prevalence of abnormalities in knees detected by MRI in adults without knee osteoarthritis: population based observational study (Framingham Osteoarthritis Study). BMJ 345:e5339

    Article  PubMed  PubMed Central  Google Scholar 

  21. Helmick CG, Felson DT, Lawrence RC et al (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum 58:15–25

    Article  PubMed  Google Scholar 

  22. Hunter DJ, Arden N, Conaghan PG et al (2011) Definition of osteoarthritis on MRI: results of a Delphi exercise. Osteoarthr Cartil 19:963–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jahr H, Brill N, Nebelung S (2016) Detecting early stage osteoarthritis by optical coherence tomography? Biomarkers 20(8):590–596. https://doi.org/10.3109/1354750X.2015.1130190

    Article  Google Scholar 

  24. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kijowski R, Blankenbaker DG, Munoz Del Rio A et al (2013) Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology 267:503–513

    Article  PubMed  Google Scholar 

  26. Kim YJ, Jaramillo D, Millis MB et al (2003) Assessment of early osteoarthritis in hip dysplasia with delayed gadolinium-enhanced magnetic resonance imaging of cartilage. J Bone Joint Surg Am 85-A:1987–1992

    Article  PubMed  Google Scholar 

  27. Krampla W, Roesel M, Svoboda K et al (2009) MRI of the knee: how do field strength and radiologist’s experience influence diagnostic accuracy and interobserver correlation in assessing chondral and meniscal lesions and the integrity of the anterior cruciate ligament? Eur Radiol 19:1519–1528

    Article  CAS  PubMed  Google Scholar 

  28. Lawrence RC, Felson DT, Helmick CG et al (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 58:26–35

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li J, Zheng ZZ, Li X et al (2009) Three dimensional assessment of knee cartilage in cadavers with high resolution MR-arthrography and MSCT-arthrography. Acad Radiol 16:1049–1055

    Article  PubMed  Google Scholar 

  30. Link TM, Neumann J, Li X (2017) Prestructural cartilage assessment using MRI. J Magn Reson Imaging 45:949–965

    Article  PubMed  Google Scholar 

  31. Lotz MK, Kraus VB (2010) New developments in osteoarthritis. Posttraumatic osteoarthritis: pathogenesis and pharmacological treatment options. Arthritis Res Ther 12:211

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mainil-Varlet P, Aigner T, Brittberg M et al (2003) Histological assessment of cartilage repair: a report by the Histology Endpoint Committee of the International Cartilage Repair Society (ICRS). J Bone Joint Surg Am 85(A Suppl 2):45–57

    Article  PubMed  Google Scholar 

  33. Mamisch TC, Kain MS, Bittersohl B et al (2011) Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) in Femoacetabular impingement. J Orthop Res 29:1305–1311

    Article  PubMed  Google Scholar 

  34. Mankin HJ, Dorfman H, Lippiello L et al (1971) Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am 53:523–537

    Article  CAS  PubMed  Google Scholar 

  35. Menezes NM, Gray ML, Hartke JR et al (2004) T2 and T1rho MRI in articular cartilage systems. Magn Reson Med 51:503–509

    Article  CAS  PubMed  Google Scholar 

  36. Nebelung S, Brill N, Marx U et al (2015) Three-dimensional imaging and analysis of human cartilage degeneration using Optical Coherence Tomography. J Orthop Res 33:651–659

    Article  PubMed  Google Scholar 

  37. Nebelung S, Brill N, Tingart M et al (2016) Quantitative OCT and MRI biomarkers for the differentiation of cartilage degeneration. Skeletal Radiol 45:505–516

    Article  PubMed  Google Scholar 

  38. Nebelung S, Marx U, Brill N et al (2014) Morphometric grading of osteoarthritis by optical coherence tomography–an ex vivo study. J Orthop Res 32:1381–1388

    Article  PubMed  Google Scholar 

  39. Nebelung S, Sondern B, Oehrl S et al (2017) Functional MR imaging mapping of human articular cartilage response to loading. Radiology 282:464–474

    Article  PubMed  Google Scholar 

  40. Neu CP (2014) Functional imaging in OA: Role of imaging in the evaluation of tissue biomechanics. Osteoarthr Cartil 22:1349–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nicholls AS, Kiran A, Pollard TC et al (2011) The association between hip morphology parameters and nineteen-year risk of end-stage osteoarthritis of the hip: A nested case-control study. Arthritis Rheum 63:3392–3400

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nishioka H, Hirose J, Nakamura E et al (2012) T1rho and T2 mapping reveal the in vivo extracellular matrix of articular cartilage. J Magn Reson Imaging 35:147–155

    Article  PubMed  Google Scholar 

  43. Outerbridge RE (1961) The etiology of chondromalacia patellae. J Bone Joint Surg Br 43-B:752–757

    CAS  PubMed  Google Scholar 

  44. Palmer AJ, Brown CP, Mcnally EG et al (2013) Non-invasive imaging of cartilage in early osteoarthritis. Bone Joint J 95-B:738–746

    Article  CAS  PubMed  Google Scholar 

  45. Patwari P, Cook MN, Dimicco MA et al (2003) Proteoglycan degradation after injurious compression of bovine and human articular cartilage in vitro: Interaction with exogenous cytokines. Arthritis Rheum 48:1292–1301

    Article  CAS  PubMed  Google Scholar 

  46. Peterfy C, Li J, Zaim S et al (2003) Comparison of fixed-flexion positioning with fluoroscopic semi-flexed positioning for quantifying radiographic joint-space width in the knee: test-retest reproducibility. Skeletal Radiol 32:128–132

    Article  CAS  PubMed  Google Scholar 

  47. Peterfy CG, Schneider E, Nevitt M (2008) The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthr Cartil 16:1433–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Regatte RR, Akella SV, Wheaton AJ et al (2004) 3D-T1rho-relaxation mapping of articular cartilage: in vivo assessment of early degenerative changes in symptomatic osteoarthritic subjects. Acad Radiol 11:741–749

    PubMed  Google Scholar 

  49. Rehnitz C, Weber MA (2014) Morphological and functional cartilage imaging. Radiologe 54:599–615

    Article  CAS  PubMed  Google Scholar 

  50. Reichmann WM, Maillefert JF, Hunter DJ et al (2011) Responsiveness to change and reliability of measurement of radiographic joint space width in osteoarthritis of the knee: a systematic review. Osteoarthr Cartil 19:550–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Roemer FW, Crema MD, Trattnig S et al (2011) Advances in imaging of osteoarthritis and cartilage. Radiology 260:332–354

    Article  PubMed  Google Scholar 

  52. Roemer FW, Kwoh CK, Hannon MJ et al (2015) What comes first? Multitissue involvement leading to radiographic osteoarthritis: magnetic resonance imaging-based trajectory analysis over four years in the osteoarthritis initiative. Arthritis Rheum 67:2085–2096

    Article  Google Scholar 

  53. Rogers AD, Payne JE, Yu JS (2013) Cartilage imaging: a review of current concepts and emerging technologies. Semin Roentgenol 48:148–157

    Article  PubMed  Google Scholar 

  54. Roos EM, Dahlberg L (2005) Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage: a four-month, randomized, controlled trial in patients at risk of osteoarthritis. Arthritis Rheum 52:3507–3514

    Article  CAS  PubMed  Google Scholar 

  55. Saarakkala S, Waris P, Waris V et al (2012) Diagnostic performance of knee ultrasonography for detecting degenerative changes of articular cartilage. Osteoarthr Cartil 20:376–381

    Article  CAS  PubMed  Google Scholar 

  56. Sanders TG (2011) Imaging of the postoperative knee. Semin Musculoskelet Radiol 15:383–407

    Article  PubMed  Google Scholar 

  57. Schiphof D, De Klerk BM, Kerkhof HJ et al (2011) Impact of different descriptions of the Kellgren and Lawrence classification criteria on the diagnosis of knee osteoarthritis. Ann Rheum Dis 70:1422–1427

    Article  CAS  PubMed  Google Scholar 

  58. Schiphof D, Oei EH, Hofman A et al (2014) Sensitivity and associations with pain and body weight of an MRI definition of knee osteoarthritis compared with radiographic Kellgren and Lawrence criteria: a population-based study in middle-aged females. Osteoarthr Cartil 22:440–446

    Article  CAS  PubMed  Google Scholar 

  59. Shen S, Wang H, Zhang J et al (2015) T1rho magnetic resonance imaging quantification of early articular cartilage degeneration in a rabbit model. BMC Musculoskelet Disord 16:361

    Article  PubMed  PubMed Central  Google Scholar 

  60. Smith TO, Drew BT, Toms AP et al (2012) Accuracy of magnetic resonance imaging, magnetic resonance arthrography and computed tomography for the detection of chondral lesions of the knee. Knee Surg Sports Traumatol Arthrosc 20:2367–2379

    Article  PubMed  Google Scholar 

  61. Souza RB, Kumar D, Calixto N et al (2014) Response of knee cartilage T1rho and T2 relaxation times to in vivo mechanical loading in individuals with and without knee osteoarthritis. Osteoarthr Cartil 22:1367–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Spahn G, Klinger HM, Baums M et al (2011) Reliability in arthroscopic grading of cartilage lesions: results of a prospective blinded study for evaluation of inter-observer reliability. Arch Orthop Trauma Surg 131:377–381

    Article  PubMed  Google Scholar 

  63. Spahn G, Plettenberg H, Kahl E et al (2007) Near-infrared (NIR) spectroscopy. A new method for arthroscopic evaluation of low grade degenerated cartilage lesions. Results of a pilot study. BMC Musculoskelet Disord 8:47

    Article  PubMed  PubMed Central  Google Scholar 

  64. Spahn G, Wittig R, Kahl E et al (2007) Evaluation of cartilage defects in the knee: validity of clinical, magnetic-resonance-imaging and radiological findings compared with arthroscopy. Unfallchirurg 110:414–424

    Article  CAS  PubMed  Google Scholar 

  65. Surowiec RK, Lucas EP, Ho CP (2014) Quantitative MRI in the evaluation of articular cartilage health: reproducibility and variability with a focus on T2 mapping. Knee Surg Sports Traumatol Arthrosc 22:1385–1395

    Article  PubMed  Google Scholar 

  66. Tiderius CJ, Tjornstrand J, Akeson P et al (2004) Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): Intra- and interobserver variability in standardized drawing of regions of interest. Acta Radiol 45:628–634

    Article  CAS  PubMed  Google Scholar 

  67. Trattnig S, Mlynarik V, Breitenseher M et al (1999) MRI visualization of proteoglycan depletion in articular cartilage via intravenous administration of Gd-DTPA. Magn Reson Imaging 17:577–583

    Article  CAS  PubMed  Google Scholar 

  68. Van Ginckel A, Baelde N, Almqvist KF et al (2010) Functional adaptation of knee cartilage in asymptomatic female novice runners compared to sedentary controls. A longitudinal analysis using delayed Gadolinium Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC). Osteoarthr Cartil 18:1564–1569

    Article  PubMed  Google Scholar 

  69. Van Tiel J, Kotek G, Reijman M et al (2016) Is T1rho mapping an alternative to delayed gadolinium-enhanced MR imaging of cartilage in the assessment of Sulphated Glycosaminoglycan content in human osteoarthritic knees? An in vivo validation study. Radiology 279:523–531

    Article  PubMed  Google Scholar 

  70. Vande Berg BC, Lecouvet FE, Poilvache P et al (2002) Assessment of knee cartilage in cadavers with dual-detector spiral CT arthrography and MR imaging. Radiology 222:430–436

    Article  PubMed  Google Scholar 

  71. Waldt et al (2011) Messverfahren und Klassifikationen in der muskuloskelettalen Radiologie. Thieme Verlag,

  72. Widuchowski W, Widuchowski J, Trzaska T (2007) Articular cartilage defects: study of 25,124 knee arthroscopies. Knee 14:177–182

    Article  CAS  PubMed  Google Scholar 

  73. Williams A, Sharma L, Mckenzie CA et al (2005) Delayed gadolinium-enhanced magnetic resonance imaging of cartilage in knee osteoarthritis: findings at different radiographic stages of disease and relationship to malalignment. Arthritis Rheum 52:3528–3535

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Schrading.

Ethics declarations

Interessenkonflikt

S. Nebelung, B. Rath, M. Tingart, C. Kuhl und S. Schrading geben an, dass kein Interessenkonflikt besteht.

Alle beschriebenen Untersuchungen am Menschen wurden mit Zustimmung der zuständigen Ethik-Kommission, im Einklang mit nationalem Recht sowie gemäß der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Von allen beteiligten Patienten liegt eine Einverständniserklärung vor. Zusätzlich haben alle Patienten, die über Bildmaterial oder anderweitige Angaben innerhalb des Manuskripts zu identifizieren sind, hierzu ihre schriftliche Einwilligung gegeben.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nebelung, S., Rath, B., Tingart, M. et al. Chondrale und osteochondrale Defekte. Orthopäde 46, 894–906 (2017). https://doi.org/10.1007/s00132-017-3472-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-017-3472-9

Schlüsselwörter

Keywords

Navigation