Skip to main content
Log in

Diagnostik von Knorpelschäden des Kniegelenks

Validität der klinischen, radiologischen und kernspintomographischen Diagnostik im Vergleich zur Arthroskopie

Evaluation of cartilage defects in the knee

Validity of clinical, magnetic-resonance-imaging and radiological findings compared with arthroscopy

  • Originalien
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Zielstellung

Anliegen der Arbeit war es, die Validität der präoperativen klinischen Untersuchung, der radiologischen Befunde und der MRT bei der Diagnostik chondraler Schäden des Kniegelenks im Vergleich zur Arthroskopie zu bestimmen.

Methode

Bei 721 Patienten mit Kniebeschwerden die 3 Monate oder länger andauerten, erfolgte die standardisierte klinische Diagnostik (Grinding-Test), die radiologische Standarddiagnostik (Standaufnahmen und Patella-Axial-Aufnahme) sowie die MRT-Untersuchung (T1- und T2-Wichtung). Alle Patienten wurden nachfolgend arthroskopiert. Mithilfe des Tasthakentests wurde die Schwere des Knorpelschadens nach der ICRS- (International-Cartilage-Repair-Society-)Klassifikation bestimmt. Abschließend wurden die Ergebnisse der präoperativen Diagnostik mit den arthroskopischen Befunden verglichen.

Ergebnisse

Der Grinding-Test hatte eine durchschnittliche Empfindlichkeit von 0,39 mit einer signifikanten höheren Häufigkeit bei tiefer gehender Knorpelschädigung (p<0,000). Bei 97,4% der Gelenkflächen ohne Knorpelpathologie war der radiologische Befund unauffällig. Subchondrale Sklerose und Exophyten kamen signifikant häufiger bei höhergradigen Knorpelschäden vor (p<0,000). Nur in 59,5% der Fälle wurden übereinstimmende Befunde zwischen MRT und Arthroskopie erhoben. Bei 36,6% wurden die Knorpelschäden im MRT überbewertet, bei 3,9% wurde der Knorpelschaden im MRT zu niedrig eingestuft. Überbewertungen kamen signifikant häufiger bei intaktem und niedriggradig geschädigtem Knorpel vor (p<0,000).

Schlussfolgerung

Klinische, radiologische und kernspintomographische Untersuchung stehen bei höhergradigen Knorpelschäden in relativ guter Korrelation mit den arthroskopischen Befunden, während bei intaktem Knorpel oder initialer Chondropathie falsch-positive Ergebnisse häufig sind.

Abstract

Background

The study was aimed to evaluate the validity of clinical, radiological and MRI examination for cartilage defects of the knee compared with arthroscopic finding.

Methods

Sevenhundred-seventy-two patients who were suffering from knee pain over more than 3 months were evaluated clinical (grinding-sign) and with radiography and magnetic resonance imaging (MRI) and subsequent arthroscopy.

Results

The grinding sign had a sensitivity of 0.39. The association of a positive grinding test with high grade cartilage defects was significant (p<0.000). In 97.4% an intact chondral surface correlated with a normal radiological finding. Subchondral sclerosis, exophytes and a joint space narrowing was significantly associated with high grade cartilage defects (p<0.000). The accuracy of MRI was 59.5%. The MRI resulted in an overestimation in 36.6% and an underestimation in 3.9%. False-positive results were significant more often assessed in low-grade cartilage defects (p<0.000).

Conclusions

Clinical signs, x-ray imaging and MRI correlate with arthroscopic findings in cases of deep cartilage lesions. In intact or low-grade degenerated cartilage often results an overestimating of these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Ayral X, Gueguen A, Ike RW et al. (1998) Inter-observer reliability of the arthroscopic quantification of chondropathy of the knee. Osteoarthritis Cartilage 6(3): 160–166

    Article  PubMed  Google Scholar 

  2. Baysal O, Baysal T, Alkan A et al. (2004) Comparison of MRI graded cartilage and MRI based volume measurement in knee osteoarthritis. Swiss Med Wkly 134(19–20): 283–288

    Google Scholar 

  3. Benjamin C, Giffin JR, Harner CD (2003) Physical examination of the knee. In: Callaghan JJ, Rosenberg AG, Rubash HE et al. (eds) The adult knee. Lipincott Williams and Wilkins, Philadelphia, pp 315–336

  4. Blackburn WD Jr, Bernreuter WK, Rominger M et al. (1994) Arthroscopic evaluation of knee articular cartilage: a comparison with plain radiographs and magnetic resonance imaging. J Rheumatol 21(4): 675–679

    PubMed  Google Scholar 

  5. Boegard T, Rudling O, Petersson IF et al. (1998) Correlation between radiographically diagnosed osteophytes and magnetic resonance detected cartilage defects in the tibiofemoral joint. Ann Rheum Dis 57(7): 401–407

    PubMed  Google Scholar 

  6. Brismar BH, Wredmark T, Movin T et al. (2002) Observer reliability in the arthroscopic classification of osteoarthritis of the knee. J Bone Joint Surg Br 84(1): 42–47

    Article  PubMed  Google Scholar 

  7. Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85 (Suppl 2): 58–69

    PubMed  Google Scholar 

  8. Buckland-Wright JC, Macfarlane DG, Jasani MK et al. (1994) Quantitative microfocal radiographic assessment of osteoarthritis of the knee from weight bearing tunnel and semiflexed standing views. J Rheumatol. 21(9): 1734–1741

    Google Scholar 

  9. Buckup K (2000) Klinische Tests an Knochen, Gelenken und Muskeln. Thieme, Stuttgart

  10. Burstein D, Bashir A, Gray ML (2000) MRI techniques in early stages of cartilage disease. Invest Radiol 35(10): 622–638

    Article  PubMed  Google Scholar 

  11. Calvo E, Palacios I, Delgado E et al. (2001) High-resolution MRI detects cartilage swelling at the early stages of experimental osteoarthritis. Osteoarthritis Cartilage 9(5): 463–472

    Article  PubMed  Google Scholar 

  12. Calvo E, Palacios I, Delgado E et al. (2004) Histopathological correlation of cartilage swelling detected by magnetic resonance imaging in early experimental osteoarthritis. Osteoarthritis Cartilage 12(11): 878–886

    Article  PubMed  Google Scholar 

  13. Cohen ZA, McCarthy DM, Kwak SD et al. (1999) Knee cartilage topography, thickness, and contact areas from MRI: in-vitro calibration and in-vivo measurements. Osteoarthritis Cartilage 7(1): 95–109

    Article  PubMed  Google Scholar 

  14. Dalla PL, Cova M, Pozzi-Mucelli RS (1997) MRI appearance of the articular cartilage in the knee according to age. J Belge Radiol 80: 17–20

    PubMed  Google Scholar 

  15. Duda GN, Kleemann RU, Bluecher U et al. (2004) A new device to detect early cartilage degeneration. Am J Sports Med 32(3): 693–698

    Article  PubMed  Google Scholar 

  16. Eckstein F, Muller S, Faber SC et al. (2002) Side differences of knee joint cartilage volume, thickness, and surface area, and correlation with lower limb dominance – an MRI-based study. Osteoarthritis Cartilage 10(12): 914–921

    Article  PubMed  Google Scholar 

  17. Ficat RP, Philippe J, Hungerford DS (1979) Chondromalacia patellae: a system of classification. Clin Orthop Relat Res 144: 55–62

    PubMed  Google Scholar 

  18. Friemert B, Oberlander Y, Schwarz W et al. (2004) Diagnosis of chondral lesions of the knee joint: can MRI replace arthroscopy? A prospective study. Knee Surg Sports Traumatol Arthrosc 12(1): 58–64

    Article  PubMed  Google Scholar 

  19. Fründ H (1926) Traumatische Chondropathie der Patella. Ein selbständiges Krankheitsbild. Zentralbl Chir 53: 707–710

    Google Scholar 

  20. Ghanem I, Abou Jaoude S, Kharrat K, Dagher F (2002) Is MRI effective in detecting intraarticular abnormalities of the injured knee? J Med Liban 50(4): 168–174

    PubMed  Google Scholar 

  21. Glaser C (2006) Knorpelbildgebung. Radiologe 46(1): 16–25

    Article  PubMed  Google Scholar 

  22. Glaser C, Faber S, Eckstein F et al. (2001) Optimization and validation of a rapid high-resolution T1-w 3D FLASH water excitation MRI sequence for the quantitative assessment of articular cartilage volume and thickness. Magn Reson Imaging 19(2): 177–185

    Article  PubMed  Google Scholar 

  23. Gluckert K, Kladny B, Blank-Schal A et al. (1992) MRI of the knee joint with a 3-D gradient echo sequence. Equivalent to diagnostic arthroscopy? Arch Orthop Trauma Surg 112(1): 5–14

    Article  PubMed  Google Scholar 

  24. Graichen H, Al-Shamari D, Hinterwimmer S et al. (2005) Accuracy of quantitative magnetic resonance imaging in the detection of ex vivo focal cartilage defects. Ann Rheum Dis 64(8): 1120–1125

    Article  PubMed  Google Scholar 

  25. Higgins LD (2004) Patient evaluation. In: Cole BJ, Malek MM (eds) Articular lesions. A practical guide to assessment and treatment. Springer, Berlin Heidelberg New York Tokyo, pp 13–22

  26. Huegli RW, Moelleken SM, Stork A et al. (2005) MR imaging of post-traumatic articular cartilage injuries confined to the femoral trochlea. Arthroscopic correlation and clinical significance. Eur J Radiol 53(1): 90–95

    Article  PubMed  Google Scholar 

  27. Hunt N, Sanchez-Ballester J, Pandit R et al. (2001) Chondral lesions of the knee: A new localization method and correlation with associated pathology. Arthroscopy 17(5): 481–490

    PubMed  Google Scholar 

  28. Hunter DJ, March L, Sambrook PN (2003) The association of cartilage volume with knee pain. Osteoarthritis Cartilage 11(10): 725–729

    Article  PubMed  Google Scholar 

  29. Javed A, Siddique M, Vaghela M et al. (2002) Interobserver variations in intra-articular evaluation during arthroscopy of the knee. J Bone Joint Surg Br 84(1): 48–49

    Article  PubMed  Google Scholar 

  30. Jerosch J, Castro WH, de Waal Malefijt MC et al. (1997) Interobserver variation in diagnostic arthroscopy of the knee joint. „How really objective are arthroscopic findings?“ Unfallchirurg 100(10): 782–786

  31. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16: 494–502

    PubMed  Google Scholar 

  32. Kreitner KF, Hansen M, Schadmand-Fischer S et al. (1999) Low-field MRI of the knee joint: results of a prospective, arthroscopically controlled study. Rofo 170(1): 35–40

    PubMed  Google Scholar 

  33. Lundberg M, Odensten M, Thuomas KA et al. (1996) The diagnostic validity of magnetic resonance imaging in acute knee injuries with hemarthrosis. A single-blinded evaluation in 69 patients using high-field MRI before arthroscopy. Int.J Sports Med. 17(3): 218–222

    Google Scholar 

  34. Marx RG, Connor J, Lyman S et al. (2005) Multirater agreement of arthroscopic grading of knee articular cartilage. Am J Sports Med 33(11): 1654–1657

    Article  PubMed  Google Scholar 

  35. McGibbon CA, Bencardino J, Yeh ED et al. (2003) Accuracy of cartilage and subchondral bone spatial thickness distribution from MRI. J Magn Reson Imaging 17(6): 703–715

    Article  PubMed  Google Scholar 

  36. McGibbon CA, Palmer WE, Krebs DE (1998) A general computing method for spatial cartilage thickness from co-planar MRI. Med Eng Phys 20(3): 169–176

    Article  PubMed  Google Scholar 

  37. McWalter EJ, Wirth W, Siebert M et al. (2005) Use of novel interactive input devices for segmentation of articular cartilage from magnetic resonance images. Osteoarthritis Cartilage 13(1): 48–53

    Article  PubMed  Google Scholar 

  38. Menezes NM, Gray ML, Hartke JR et al. (2004) T2 and T1rho MRI in articular cartilage systems. Magn Reson Med 51(3): 503–509

    Article  PubMed  Google Scholar 

  39. Murphy BJ (2001) Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging. Skeletal Radiol 30(6): 305–311

    Article  PubMed  Google Scholar 

  40. Oakley SP, Portek I, Szomor Z et al. (2002) Poor accuracy and interobserver reliability of knee arthroscopy measurements are improved by the use of variable angle elongated probes. Ann Rheum Dis 61(6): 540–543

    Article  PubMed  Google Scholar 

  41. Outerbridge RE (1961) The etiology of chondromalacia patellae. J Bone Joint Surg Br 43: 752–757

    PubMed  Google Scholar 

  42. Potter HG, Foo LF (2006) Magnetic resonance imaging of articular cartilage: trauma, degeneration, and repair. Am J Sports Med 34(4): 661–677

    Article  PubMed  Google Scholar 

  43. Potter HG, Linklater JM, Allen AA et al. (1998) Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am 80(9): 1276–1284

    PubMed  Google Scholar 

  44. Riel KA, Reinisch M, Kersting-Sommerhoff B et al. (1999) 0.2-Tesla magnetic resonance imaging of internal lesions of the knee joint: a prospective arthroscopically controlled clinical study. Knee Surg Sports Traumatol Arthrosc 7(1): 37–41

    Article  PubMed  Google Scholar 

  45. Schafer D, Boss A, Hintermann B (2003) Accuracy of arthroscopic assessment of anterior ankle cartilage lesions. Foot Ankle Int 24(4): 317–320

    PubMed  Google Scholar 

  46. Silver FH, Bradica G, Tria AJ (2003) Structure and biomechanics of articular cartilage. In: Callaghan JJ, Rosenberg AG, Rubash HE et al. (eds) The adult knee. Lipincott Williams and Wilkins, Philadelphia, pp 105–122

  47. Spahn G, Kirschbaum S, Kahl E (2006) Factors that influence high tibial osteotomy results in patients with medial gonarthritis: a score to predict the results. Osteoarthritis Cartilage 14: 190–195

    Article  PubMed  Google Scholar 

  48. Tiderius CJ, Svensson J, Leander P et al. (2004) dGEMRIC (delayed gadolinium-enhanced MRI of cartilage) indicates adaptive capacity of human knee cartilage. Magn Reson Med 51(2): 286–290

    Article  PubMed  Google Scholar 

  49. Vallotton JA, Meuli RA, Leyvraz PF et al. (1995) Comparison between magnetic resonance imaging and arthroscopy in the diagnosis of patellar cartilage lesions: a prospective study. Knee Surg Sports Traumatol Arthrosc 3(3): 157–162

    Article  PubMed  Google Scholar 

  50. van Kampen A, de Waal Malefijt MC, Jerosch J et al. (1998) Interobserver variance in diagnostic arthroscopy of the knee. Knee Surg Sports Traumatol Arthrosc 6(1): 16–20

    Article  PubMed  Google Scholar 

  51. Wayne JS, Kraft KA, Shields KJ et al. (2003) MR imaging of normal and matrix-depleted cartilage: correlation with biomechanical function and biochemical composition. Radiology 228(2): 493–499

    PubMed  Google Scholar 

  52. Wheaton AJ, Dodge GR, Borthakur A et al. (2005) Detection of changes in articular cartilage proteoglycan by T(1rho) magnetic resonance imaging. J Orthop Res 23(1): 102–108

    Article  PubMed  Google Scholar 

  53. Wörtler K (2002) Kniegelenk. In: Rummeny EJ, Heindel WL (Hrsg) Ganzkörper-MR-Tomographie. Thieme, Stuttgart, S 558–584

Download references

Danksagung

Herrn Dr. Fischer, radiologische Gemeinschaftspraxis Eisenach, danken wird für die Überlassung der MRT-Bilder

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Spahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spahn, G., Wittig, R., Kahl, E. et al. Diagnostik von Knorpelschäden des Kniegelenks. Unfallchirurg 110, 414–424 (2007). https://doi.org/10.1007/s00113-006-1225-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-006-1225-z

Schlüsselwörter

Keywords

Navigation