Skip to main content

Advertisement

Log in

Mit Gentamicin oder Levofloxacin gesättigter Kollagenhydroxyapatit (Healos®)

Antimikrobielle In-vitro-Wirksamkeit – eine Pilotstudie

Collagen hydroxyapatite (Healos®) saturated with gentamicin or levofloxacin

In vitro antimicrobial effectiveness – a pilot study

  • Originalien
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Neben der strukturgebenden Funktion können Knochenersatzstoffe auch als Vehikel für die lokale Antibiotikafreisetzung dienen, um Infektionen der Knochen vorzubeugen oder zu behandeln.

Material und Methoden

Die Sättigung und antibiotische Wirksamkeit von Gentamicin und Levofloxacin mit Healos® wurde in vitro überprüft und mit Healos® ohne Antibiotikazusatz verglichen. Die antibiotisch gesättigten Knochenersatzstoffe wurden unverdünnt und in 10- sowie 100facher Verdünnung auf ihre Aktivität gegen spondylodiszitisspezifische Keime auf verschiedenen Agarplatten nach der Agardiffusionsmethode getestet.

Ergebnisse

Alle antibiotikumgesättigten und verdünnten Kollagen/HA-Proben zeigten ellipsenförmige Hemmhöfe auf den entsprechenden Agarplatten. Für beide Antibiotika konnte ein linearer Zusammenhang zwischen Hemmhofgröße und Verdünnung festgestellt werden.

Schlussfolgerung

Die antibakterielle Wirkung des antibiotikumgesättigten Kollagen/HA entspricht der antibiotischen Verdünnung. Die Ergebnisse sollten auf In-vivo-Studien ausgeweitet werden, um die antibakterielle Effizienz der Antibiotikum gesättigten Knochenersatzstoffe nach Implantation zu bestimmen.

Abstract

Background

The functions of synthetic bone graft substitutes include not only structural support to provide bone healing and osseous ingrowth but also the ability to serve as a local antibiotic delivery system to prevent or treat infections of the spine.

Material and Methods

The impregnation and antibiotic efficiency of gentamicin and levofloxacin with Healos was investigated in vitro and compared with Healos without an antibiotic additive. These antibiotic-loaded bone graft substitutes were examined without dilution and with 10-fold and 100-fold dilution for activity against spondylodiscitis-causing bacteria on different agar plates using an agar diffusion method.

Results

All hydroxyapatite (HA)/collagen-saturated diluted antibiotics showed elliptical inhibition zones on the corresponding agar plates. For both antibiotics, there was a linear correlation between dilution and area of the inhibition zone.

Conclusion

The analysis showed that the antimicrobial activity of HA/collagen-saturated antibiotics corresponded to the antimicrobial dilutions. These results should be further analyzed using in vivo studies to determine the remaining antibiotic efficiency after implantation of bone graft substitutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Alt V, Bitschnau A, Osterling J et al (2006) The effects of combined gentamicin-hydroxyapatite coating for cementless joint prostheses on the reduction of infection rates in a rabbit infection prophylaxis model. Biomaterials 27(26):4627–4634

    Article  CAS  PubMed  Google Scholar 

  2. Black FO, Pesznecker S, Stallings V (2004) Permanent gentamicin vestibulotoxicity. Otol Neurotol 25(4):559–569

    Article  PubMed  Google Scholar 

  3. Breusch SJ, Kühn KD (2003) Bone cements based on polymethylmethacrylate. Orthopade 32(1):41–50

    Article  CAS  PubMed  Google Scholar 

  4. Buchholz HW, Elson RA, Engelbrecht E et al (1981) Management of deep infection of total hip replacement. J Bone Joint Surg Br 63(3):342–353

    PubMed  Google Scholar 

  5. Carragee EJ (1997) Instrumentation of the infected and unstable spine: a review of 17 cases from the thoracic and lumbar spine with pyogenic infections. J Spinal Disord Tech 10(4):317–324

    CAS  Google Scholar 

  6. Englert C, Angele P, Fierlbeck J et al (2007) Conductive bone substitute material with variable antibiotic delivery. Unfallchirurg 110:408–413

    Article  CAS  PubMed  Google Scholar 

  7. Hadjipavlou AG, Mader JT, Necessary JT, Muffoletto AJ (2000) Hematogenous pyogenic spinal infections and their surgical management. Spine 25(13):1668–1679

    Article  CAS  PubMed  Google Scholar 

  8. Heijink A, Yaszemski MJ, Patel R et al (2006) Local antibiotic delivery with OsteoSet, DBX, and Collagraft. Clin Orthop Relat Res 451:29–33

    Article  PubMed  Google Scholar 

  9. Henry SL, Galloway KP (1995) Local antibacterial therapy for the management of orthopaedic infections. Pharmacokinetic considerations. Clin Pharmacokinet 29:36–45

    Article  CAS  PubMed  Google Scholar 

  10. Huttner B, Opravil M (2006) Die infektiöse Spondylitis. Z Rheumatol 65:7–11

    Article  CAS  PubMed  Google Scholar 

  11. Isenberg J, Jubel A, Hahn U et al (2005) Multistep surgery for spondylosyndesis. Treatment concept of destructive spondylodiscitis in patients with reduced general condition. Orthopade 34:159–166

    Article  CAS  PubMed  Google Scholar 

  12. Kanellakopoulou K, Giamarellos-Bourboulis EJ (2000) Carrier systems for the local delivery of antibiotics in bone infections. Drugs 59:1223–1232

    Article  CAS  PubMed  Google Scholar 

  13. Klöckner C, Valencia R, Weber U (2001) Alignment of the sagittal profile after surgical therapy of nonspecific destructive spondylodiscitis: ventral or ventrodorsal method-a comparison of outcomes. Orthopade 30:965–976

    Article  PubMed  Google Scholar 

  14. Lerner T, Hackenberg L, Rösler S et al (2005) Operative Therapie der unspezifischen und spezifischen Spondylodiszitis. Z Orthop 143:204–212

    Article  CAS  PubMed  Google Scholar 

  15. McKee MD, Wild LM, Schemitsch EH, Waddell JP (2002) The use of an antibiotic-impregnated, osteoconductive, bioabsorbable bone substitute in the treatment of infected long bone defects: early results of a prospective trial. J Orthop Trauma 16(9):622–627

    Article  PubMed  Google Scholar 

  16. McLaren AC, McLaren SG, Nelson CL et al (2002) The effect of sampling method on the elution of tobramycin from calcium sulfate. Clin Orthop Relat Res 403:54–57

    Article  PubMed  Google Scholar 

  17. McLaren AC (2004) Alternative materials to acrylic bone cement for delivery of depot antibiotics in orthopaedic infections. Clin Orthop Relat Res 427:101–106

    Article  PubMed  Google Scholar 

  18. Neut D, van de Belt H, Stokroos I et al (2001) Biomaterial-associated infection of gentamicinloaded PMMA beads in orthopaedic revision surgery. J Antimicrob Chemother 47:885–891

    Article  CAS  PubMed  Google Scholar 

  19. Prat-Poiret N, Langlais F, Bonnaure M et al (1996) Tricalcium phosphate and gentamycin. In vitro and in vivo antibiotic diffusion, rehabilitation in bone site in sheep. Chirurg 121(4):298–308

    CAS  Google Scholar 

  20. Silverman LD, Lukashova L, Herman OT et al (2007) Release of gentamicin from a tricalcium phosphate bone implant. J Orthop Res 25(1):23–29

    Article  CAS  PubMed  Google Scholar 

  21. Simank HG, Herold F, Schneider M et al (2004) Growth and differentiation factor 5 (GDF-5) composite improves the healing of necrosis of the femoral head in a sheep model. Analysis of an animal model. Orthopade 33(1):68–75

    Article  PubMed  Google Scholar 

  22. Shirtliff ME, Calhoun JH, Mader JT (2002) Experimental osteomyelitis treatment with antibiotic-impregnated hydroxyapatite. Clin Orthop Relat Res 401:239–247

    Article  PubMed  Google Scholar 

  23. Stallmann HP, Faber C, Bronckers AL et al (2006) In vitro gentamicin release from commercially available calcium-phosphate bone substitutes influence of carrier type on duration of the release profile. BMC Musculoskelet Disord 7:18

    Article  PubMed  Google Scholar 

  24. Spiro RC, Thompson AY, Poser JW (2001) Spinal fusion with recombinant human growth and differentiation factor-5 combined with a mineralized collagen matrix. Anat Rec 263(4):388–395

    Article  CAS  PubMed  Google Scholar 

  25. Tay BK, Le AX, Heilman M et al (1998) Use of a collagen-hydroxyapatite matrix in spinal fusion. A rabbit model. Spine 23(21):2276–2281

    Article  CAS  PubMed  Google Scholar 

  26. Teller M, Gopp U, Neumann HG, Kühn KD (2007) Release of gentamicin from bone regenerative materials: an in vitro study. J Biomed Mater Res B Appl Biomater 81(1):23–29

    CAS  PubMed  Google Scholar 

  27. Thomas DB, Brooks DE, Bice TG et al (2005) Tobramycin-impregnated calcium sulfate prevents infection in contaminated wounds. Clin Orthop Relat Res 441:366–371

    Article  PubMed  Google Scholar 

  28. Vaccaro AR, Heller JG, Patel TCH et al (2002) North American Spine Society for Contemporary Concepts in Spine Care. Contempory concepts in spine care. Bone grafting alternatives in spinal surgery. Spine J 2:206–215

    Article  PubMed  Google Scholar 

  29. Vyas H, Krishnaswamy G (2007) Images in clinical medicine. Quinolone-associated rupture of the Achilles‘ tendon. N Engl J Med 357(20):2067

    Article  CAS  PubMed  Google Scholar 

  30. Wichelhaus TA, Dingeldein E, Rauschmann M et al (2001) Elution characteristics of vancomycin, teicoplanin, gentamicin and clindamycin from calcium sulphate beads. J Antimicrob Chemother 48:117–119

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehung hin: Der Knochenersatzstoff Healos® wurde von der Fa. DePuy in Form von Drittmitteln zur Verfügung gestellt. Trotz des möglichen Interessenkonflikts ist der Beitrag unabhängig und produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.H. Fürstenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fürstenberg, C., Wiedenhöfer, B., Putz, C. et al. Mit Gentamicin oder Levofloxacin gesättigter Kollagenhydroxyapatit (Healos®). Orthopäde 39, 437–443 (2010). https://doi.org/10.1007/s00132-009-1528-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-009-1528-1

Schlüsselwörter

Keywords

Navigation