Skip to main content
Log in

The geochemistry of apatite from the Los Colorados iron oxide–apatite deposit, Chile: implications for ore genesis

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Apatite grains from the Los Colorados iron oxide–apatite (IOA) deposit, the largest IOA deposit in the Chilean Iron Belt (CIB), exhibit significant intracrystalline spatial variability with respect to the concentrations of F, Cl, and OH and trace elements. Statistical interrogation of the compositional data indicates that individual apatite grains contain spatially discrete F-rich and Cl-rich domains. The chemical composition of the F-rich domains is consistent with apatite growth from silicate melts, whereas the chemical composition of the Cl-rich domains is consistent with apatite growth from a magmatic-hydrothermal fluid that cooled as it percolated outward from the Los Colorados fault—the structural control for emplacement of the ore body—into the surrounding brecciated diorite and andesite host rocks. Apatite in the deposit is intimately intergrown with magnetite and actinolite for which trace element, Fe, H, and O stable isotope data indicate a combined magmatic/magmatic-hydrothermal genesis for the deposit. The compositional data for apatite are consistent with a genetic model wherein F-rich apatite cores crystallized with magnetite from silicate melt, followed by exsolution of a magmatic-hydrothermal fluid during decompression of the parent magma. Experimental studies demonstrate that magmatic-hydrothermal volatile phase bubbles preferentially nucleate and grow on the surfaces of apatite and magnetite microlites during decompression of a magma body. Continued degassing of the melt results in the volatile phase sweeping up apatite and magnetite microlites, and forming a magnetite-apatite-fluid suspension that is buoyant in the magma chamber, and ascends from the source magma along faults during regional extension. Halite-saturated fluid inclusions in magnetite, which is paragenetically equivalent to apatite at Los Colorados, indicate that the magmatic-hydrothermal fluid was a brine, which allows this fluid to efficiently scavenge Cl, P, rare earth elements, and other fluid-compatible elements from the silicate melt. During ascent, the XCl/XF ratio of apatite increases as it grows from the evolving Cl-rich magmatic-hydrothermal fluid during decompression and cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barra F, Reich M, Selby D, Rojas P, Simon AC, Salazar E, Palma G (2017) Unraveling the origin of the Andean IOCG clan: a Re-Os approach. Ore Geol Rev 81:62–78

    Article  Google Scholar 

  • Barton MD (2013) Iron oxide(-Cu-Au-REE-P-Ag-U-Co) systems. In: Turekian KK, Holland HD (eds) Treatise on geochemistry, 2nd edn. Elsevier, Amsterdam, pp 515–541

    Google Scholar 

  • Barton MD, Johnson DA (1996) Evaporitic-source model for igneous-related Fe oxide–(REE-Cu-Au-U) mineralization. Geology 24(3):259–262

    Article  Google Scholar 

  • Barton MD, Johnson DA (2004) Footprints of Fe-oxide(-Cu-Au) systems. SEG 2004: Predictive Mineral Discovery Under Cover. Centre for Global Metallogeny, Spec. Pub. 33, The University of Western Australia: 112-116

  • Belousova EA, Griffin WL, O’Reilly SY, Fisher NI (2002) Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. J Geochemical Explor 76:45–69

    Article  Google Scholar 

  • Bilenker LD, Simon AC, Reich M, Lundstrom CC, Gajos N, Bindeman I, Barra F, Munizaga R (2016) Fe-O stable isotope pairs elucidate a high-temperature origin of Chilean iron oxide-apatite deposits. Geochim Cosmochim Ac 177:94–104

    Article  Google Scholar 

  • Bonyadi Z, Davidson GJ, Mehrabi B, Meffre S, Ghazban F (2011) Significance of apatite REE depletion and monazite inclusions in the brecciated Se-Chahun iron oxide apatite deposit, Bafq district, Iran: insights from paragenesis and geochemistry. Chem Geol 281:253–269

    Article  Google Scholar 

  • Boudreau AE (1993) Chlorine as an exploration guide for the platinum-group elements in layered intrusions. J Geochem Explor 48:21–37

    Article  Google Scholar 

  • Boudreau AE, Kruger FJ (1990) Variation in the composition of apatite through the Merensky cyclic unit in the western Bushveld Complex. Econ Geol 85:737–745

    Article  Google Scholar 

  • Boudreau AE, Simon AC (2007) Crystallization and degassing in the basement sill, McMurdo Dry Valleys, Antarctica. J Petrol 48(7):1369–1386

    Article  Google Scholar 

  • Boudreau AE, Mathez EA, Mccallum IS (1986) Halogen geochemistry of the stillwater and bushveld complexes: evidence for transport of the platinum-group elements by Cl-rich fluids. J Petrol 27:967–986

    Article  Google Scholar 

  • Boudreau AE, Love C, Prendergast MD (1995) Halogen geochemistry of the Great Dyke, Zimbabwe. Contrib Mineral Petr V:289–300. https://doi.org/10.1007/s004100050128

    Article  Google Scholar 

  • Bouzari F, Hart CJ, Bissig R, Barker S (2016) Hydrothermal alteration revealed by apatite luminescence and chemistry: a potential indicator mineral for exploring covered porphyry copper deposits. Econ Geol 111:1397–1410

    Article  Google Scholar 

  • Broughm SG, Hanchar JM, Tornos F, Westhues A, Attersley S (2017) Mineral chemistry of magnetite from magnetite-apatite mineralization and their host rocks: examples from Kiruna, Sweden, and El Laco, Chile. Mineral Deposita 52:1223–1244. https://doi.org/10.1007/s00126-017-0718-8

    Article  Google Scholar 

  • Brown GM, Peckett A (1977) Fluorapatites from Skaergaard intrusion, East Greenland. Mineral Mag 41:227–232

    Article  Google Scholar 

  • Compañía Minera del Pacífico (2013) Presentation NEVASA. www.cap.cl/wp/content/uploads/2013/09/cap_presentacion_nevasa_septiembre_2013.p. Accessed 10 December 2015

  • Davidson GJ, Large RR (1994) Gold metallogeny and the copper-gold association of the Australian Proterozoic. Mineral Deposita 29(3):208–223

    Google Scholar 

  • de Jong G, Rotherham J, Phillips GN, Williams PJ (1998) Mobility of rare-earth elements and copper during shear-zone-related retrograde metamorphism. Geol Mijnb 76(4):311–319

    Article  Google Scholar 

  • Deditius A, Reich M, Simon AC, Suvorova A, Knipping J, Roberts MP, Rubanov S, Dodd A, Saunders M (2018) Nanogeochemistry of hydrothermal magnetite. Contrib Min Petrol 173(6):46

    Article  Google Scholar 

  • Edmonds M (2015) Flotation of magmatic minerals. Geology 43(7):655–656

    Article  Google Scholar 

  • Edmonds M, Brett A, Herd RA, Humphreys MCS, Woods A (2014) Magnetite-bubble aggregates at mixing interfaces in andesite magma bodies. Geol Soc London Spc Pub 410(1):95–121

    Article  Google Scholar 

  • Frietsch R (1978) On the magmatic origin of iron ores of the Kiruna type. Econ Geol 73:478–485

    Article  Google Scholar 

  • Frietsch R, Perdahl JA (1995) Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types. Ore Geol Rev 9:489–510

    Article  Google Scholar 

  • Goldoff B, Webster JD, Harlov DE (2012) Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation of halogens. Am Mineral 97(7):1103–1115

    Article  Google Scholar 

  • Götze J (2012) Application of cathodoluminescence microscopy and spectroscopy in geosciences. Microsc Microanal 18:1270–1284

    Article  Google Scholar 

  • Götze J, Plötze M, Habermann D (2001) Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz—a review. Mineral Petrol 71:225–250

    Article  Google Scholar 

  • Gros K, Słaby E, Förster HJ, Michalak PP, Munnik F, Götze J, Rhede D (2016) Visualization of trace-element zoning in fluorapatite using BSE and CL imaging, and EPMA and μPIXE/μPIGE mapping. Miner Petrol 110(6):809–821. https://doi.org/10.1007/s00710-016-0452-4

    Article  Google Scholar 

  • Groves DI, Bierlein FP, Meinert LD, Hitzman MW (2010) Iron oxide copper-gold (IOCG) deposits through earth history: implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Econ Geol 105:641–654

    Article  Google Scholar 

  • Gualda GAR, Ghiorso MS (2007) Magnetite scavenging and the buoyancy of bubbles in magmas. Part 2: energetics of crystal-bubble attachment in magmas. Contrib Min Petrol 154:479–490

    Article  Google Scholar 

  • Guillong M, Meier DL, Allan MM, Heinrich CA, Yardley BWD (2008) Appendix A6: SILLS: a Matlab-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions. Mineralogical Association of Canada Short Course 40:328–333

    Google Scholar 

  • Harlov DE (2015) Apatite: a fingerprint for metasomatic processes. Elements 11:171–176

    Article  Google Scholar 

  • Harlov DE, Förster HJ (2003) Fluid-induced nucleation of (Y-REE)-phosphate minerals within apatite: nature and experiment. Part II. Fluorapatite. Am Mineral 88:1209–1229

    Article  Google Scholar 

  • Harlov DE, Andersson UB, Förster HJ, Nyström JO, Dulski P, Broman C (2002) Apatite–monazite relations in the Kiirunavaara magnetite–apatite ore, northern Sweden. Chem Geol 191:47–72

    Article  Google Scholar 

  • Harlov DE, Meighan CJ, Kerr ID, Samson IM (2016) Mineralogy, chemistry, and fluid-aided evolution of the Pea Ridge Fe oxide-(Y+ REE) deposit, southeast Missouri, USA. Econ Geol 111(8):1963–1984

    Article  Google Scholar 

  • Hautmann S, Witham F, Christopher T, Cole P, Linde AT, Sacks S, Sparks SJ (2014) Strain field analysis on Montserrat (W.I.) as tool for assessing permeable flow paths in the magmatic system of Soufriere Hills Volcano. Geoch Geophys Geosys 15:676–690

    Article  Google Scholar 

  • Hersum T, Hilpert M, Marsh B (2005) Permeability and melt flow in simulated and natural partially molten basaltic magmas. Earth Planet Sci Lett 237(3):798–814

    Article  Google Scholar 

  • Hitzman MW, Oreskes N, Einaudi MT (1992) Geological characteristics and tectonic setting of proterozoic iron oxide (Cu-U-Au-REE) deposits. Precambrian Res 58:241–287

    Article  Google Scholar 

  • Hofstra AH, Meighan CJ, Song X, Samson I, Marsh EE, Lowers HA, Emsbo P, Hunt AG (2016) Mineral thermometry and fluid inclusion studies of the Pea Ridge iron oxide-apatite–rare earth element deposit, Mesoproterozoic St. Francois Mountains terrane, southeast Missouri, USA. Econ Geol 111:1985–2016

    Article  Google Scholar 

  • Hughes JM, Rakovan JF (2015) Structurally robust, chemically diverse: apatite and apatite supergroup minerals. Elements 11:165–170

    Article  Google Scholar 

  • Hurwitz S, Navon O (1994) Bubble nucleation in rhyolitic melts: experiments at high pressure, temperature, and water content. Earth Planet Sci Lett 122(3–4):267–280

    Article  Google Scholar 

  • Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA, Günther D (2011) Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostand Geoanal Res 35:397–429

    Article  Google Scholar 

  • Jonsson E, Troll VR, Högdahl K, Harris C, Weis F, Nilsson KP, Skelton A (2013) Magmatic origin of giant ‘Kiruna-type’ apatite-iron-oxide ores in central Sweden. Sci Rep 3:1644

    Article  Google Scholar 

  • Jonsson E, Harlov DE, MaJka J, Högdahl K, Persson-Nilsson K (2016) Fluorapatite-monazite allanite relations in the Grängesberg apatite-iron oxide ore district, Bergslagen, Sweden. Am Mineral 101(8):1769–1782

    Article  Google Scholar 

  • Kempe U, Götze J (2002) Cathodoluminescence (CL) behaviour and crystal chemistry of apatite from rare-metal deposits. Mineral Mag 66:151–172

    Article  Google Scholar 

  • Ketcham RA (2015) Technical note: calculation of stoichiometry from EMP data for apatite and other phases with mixing on monovalent anion sites. Am Mineral 100:1620–1623. https://doi.org/10.2138/am-2015-5171

    Article  Google Scholar 

  • Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Lundstrom C, Bindeman I, Munizaga R (2015a) Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions. Geology 43:591–594

    Article  Google Scholar 

  • Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Wӓlle M, Heinrich CA, Holtz F, Munizaga R (2015b) Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochim Cosmochim Acta 171:15–38

    Article  Google Scholar 

  • Konecke BA, Fiege A, Simon AC, Parat F, Stechern A (2017a) Co-variability of S6+, S4+ and S2− in apatite as a function of oxidation state: implications for a new oxybarometer. Am Mineral 102(3):548–557. https://doi.org/10.2138/am-2017-5907

    Article  Google Scholar 

  • Konecke B, Fiege A, Simon AC, Holtz F (2017b) Cryptic metasomatism during late-stage lunar magmatism implicated by sulfur in apatite. Geology 45:739–742

    Google Scholar 

  • Krneta S, Ciobanu CL, Cook NJ, Ehrig K, Kontonikas-Charos A (2016) Apatite at Olympic Dam, South Australia: a petrogenetic tool. Lithos 262:470–485

    Article  Google Scholar 

  • Mao M, Rukhlov AS, Rowins SM, Spence J, Coogan LA (2016) Apatite trace element compositions: a robust new tool for mineral exploration. Econ Geol 111:187–1222

    Article  Google Scholar 

  • Matveev S, Ballhaus C (2002) Role of water in the origin of podiform chromitite deposits. Earth Planet Sci Lett 203:235–243

    Article  Google Scholar 

  • Mungall JE, Brenan JM, Godel B, Barnes SJ, Gaillard F (2015) Transport of metals and sulphur in magmas by flotation of sulphide melt on vapour bubbles. Nat Geosci 8(3):216–219

    Article  Google Scholar 

  • Nadoll P, Angerer T, Mauk J, French D, Walshe J (2014) The chemistry of hydrothermal magnetite: a review. Ore Geol Rev 61:1–32

    Article  Google Scholar 

  • Naslund HR, Henríquez F, Nyström JO, Vivallo W, Dobbs FM (2002) Magmatic iron ores and associated mineralization: examples from the Chilean High Andes and Coastal Cordillera. In: Porter TM (ed) Hydrothermal iron oxide copper-gold and related deposits: a global perspective, 2nd edn. PGC Publishing, Adelaide, pp 207–226

    Google Scholar 

  • Nyström JO, Henríquez F (1994) Magmatic features of iron ores of the Kiruna type in Chile and Sweden: ore textures and magnetite geochemistry. Econ Geol 89:820–839

    Article  Google Scholar 

  • Oyarzún J, Frutos J (1984) Tectonic and petrological frame of the Cretaceous iron deposits of North Chile. Mining Geol 34:21–31

    Google Scholar 

  • Oyarzun R, Oyarzún J, Ménard JJ, Lillo J (2003) The Cretaceous iron belt of northern Chile: role of oceanic plates, a superplume event, and a major shear zone. Miner Deposita 38(5):640–646

    Article  Google Scholar 

  • Parat F, Holtz F, Streck MJ (2011) Sulfur-bearing magmatic accessory minerals. Rev Mineral Geochemistry 73:285–314. https://doi.org/10.2138/rmg.2011.73.10

    Article  Google Scholar 

  • Pettke T, Oberli F, Audetat A, Guillong M, Simon AC, Hanley JJ, Klemm LM (2012) Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS. Ore Geol Rev 44:10–38

    Article  Google Scholar 

  • Piccoli PM, Candela PA (2002) Apatite in igneous system. Rev Mineral Geochem 48(1):255–292

    Article  Google Scholar 

  • Pichon R (1981) Contribution a l’étude de la ceinture du fer du Chili: Les gisements de Bandurrias (Prov. d’Atacama) et Los Colorados norte. (Prov. de Huasco). Dissertation, University of Paris

  • Pincheira M, Thiele R, Fontbote L (1990) Tectonic transpression along the southern segment of the Atacama Fault-Zone, Chile. In: Colloques et Seminaires: Symposium International Géodynamique Andine, Grenoble, pp 133–136

  • Pirajno F, Bagas L (2008) A review of Australia's Proterozoic mineral systems and genetic models. Precambrian Res 166(1):54–80

    Article  Google Scholar 

  • Pyle JM, Spear FS, Wark DA (2002) Electron microprobe analysis of REE in apatite, monazite and xenotime: protocols and pitfalls. Rev Mineral Geochem 48(1):337–362

    Article  Google Scholar 

  • Reed MJ, Candela PA, Piccoli PM (2000) The distribution of rare earth elements between monzogranitic melt and the aqueous volatile phase in experimental investigations at 200 MPa and 800 °C. Contrib Min Petr 140:251–262

    Article  Google Scholar 

  • Reich M, Simon AC, Deditius A, Barra F, Chryssoulis S, Lagas G, Tardani D, Knipping J, Bilenker L, Sánchez-Alfaro P, Roberts MP (2016) Trace element signature of pyrite from the Los Colorados iron oxide-apatite (IOA) deposit, Chile: a missing link between Andean IOA and iron oxide copper-gold systems? Econ Geol 111:743–761

    Article  Google Scholar 

  • Rhodes AL, Oreskes N (1999) Oxygen isotope composition of magnetite deposits at El Laco, Chile: evidence of formation from isotopically heavy fluids. Soc Econ Geol Spc Pub 7:333–351

    Google Scholar 

  • Rhodes AL, Oreskes N, Sheets S (1999) Geology and rare earth element geochemistry of magnetite deposits at El Laco, Chile. Soc Econ Geol Spc Pub 7:299–332

    Google Scholar 

  • Rojas PA, Barra F, Deditius A, Reich M, Simon A, Roberts M, Rojo M (2018) New contributions to the understanding of Kiruna-type iron oxide-apatite deposits revealed by magnetite ore and gangue mineral geochemistry at the El Romeral deposit, Chile. Ore Geol Rev 93:413–435

    Article  Google Scholar 

  • Schettler G, Gottschalk M, Harlov DE (2011) A new semi-micro wet chemical method for apatite analysis and its application to the crystal chemistry of fluorapatite-chlorapatite solid solutions. Am Mineral 96:138–152

    Article  Google Scholar 

  • Sillitoe RH (2003) Iron oxide-copper-gold deposits: an Andean view. Mineral Deposita 38:787–812

    Article  Google Scholar 

  • Sillitoe RH, Burrows DR (2002) New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile. Econ Geol 97(5):1101–1109

    Google Scholar 

  • Simon AC, Pettke T, Candela PA, Piccoli PM, Heinrich C (2007) The partitioning behavior of As and Au in a S-free and S-bearing magmatic systems. Geochim Cosmochim Ac 71:1764–1782

    Article  Google Scholar 

  • Simon AC, Knipping J, Reich M, Barra F, Deditius A, Bilenker L, Childress T (2018) Kiruna-type iron oxide-apatite (IOA) and iron oxide copper-gold (IOCG) deposits form by a combination of igneous and magmatic-hydrothermal processes: evidence from the Chilean Iron Belt. SEG Special Publications No. 21. pp. 89-114

  • Streck MJ, Dilles JH (1998) Sulfur evolution of oxidized arc magmas as recorded in apatite from a porphyry copper batholith. Geology 26:523–526. https://doi.org/10.1130/0091-7613(1998)026<0523:SEOOAM>2.3.CO

    Article  Google Scholar 

  • Sun S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc London, Spc Pub 42:313–345

    Article  Google Scholar 

  • Torab FM, Lehmann B (2007) Magnetite-apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology. Mineral Mag 71:347–363

    Article  Google Scholar 

  • Tornos F, Velasco F, Hanchar JM (2016) Iron-rich melts, magmatic magnetite, and superheated hydrothermal systems: the El Laco deposit, Chile. Geology 44:427–430

    Article  Google Scholar 

  • Treloar PJ, Colley H (1996) Variation in F and Cl contents in apatites from magnetite-apatite ores in northern Chile, and their ore-genetic implications. Mineral Mag 60:285–301

    Article  Google Scholar 

  • Velasco F, Tornos F, Hanchar JM (2016) Immiscible iron-and silica-rich melts and magnetite geochemistry at the El Laco volcano (northern Chile): evidence for a magmatic origin for the magnetite deposits. Ore Geol Rev 79:346–366

    Article  Google Scholar 

  • Watson EB, Capobianco CJ (1981) Phosphorus and the rare earth elements in felsic magmas: an assessment of the role of apatite. Geochim Cosmochim Ac 45:2349–2358

    Article  Google Scholar 

  • Waychunas GA (2002) Apatite luminescence. Rev Mineral Geochem 48:701–742

    Article  Google Scholar 

  • Webster JD, Mandeville CD (2007) Fluid immiscibility in volcanic environments. Rev Min Geochem 65:313–362

    Article  Google Scholar 

  • Webster JD, Piccoli PM (2015) Magmatic apatite: a powerful, yet deceptive, mineral. Elements 11:177–182

    Article  Google Scholar 

  • Webster JD, Goldoff BA, Flesch RN, Nadeau PA, Silbert ZW (2017) Hydroxyl, Cl, and F partitioning between high-silica rhyolitic melts-apatite-fluid (s) at 50–200 MPa and 700–1000 C. Am Mineral 102(1):61–74

    Article  Google Scholar 

  • Weis F (2013) Oxygen and Iron isotope systematics of the Grängesberg Mining District (GMD), Central Sweden. Master’s thesis, Uppsala universitet

  • Westhues A, Hanchar JM, Whitehouse MJ, Martinsson O (2016) New constraints on the timing of host-rock emplacement, hydrothermal alteration, and iron oxide-apatite mineralization in the Kiruna District, Norrbotten, Sweden. Econ Geol 111(7):1595–1618

    Article  Google Scholar 

  • Westhues A, Hanchar JM, LeMessurier MJ, Whitehouse MJ (2017a) Evidence for hydrothermal alteration and source regions for the Kiruna iron oxide–apatite ore (northern Sweden) from zircon Hf and O isotopes. Geology 45:571–574

    Article  Google Scholar 

  • Westhues A, Hanchar JM, Voisey CR, Whitehouse MJ, Rossman GR, Wirth R (2017b) Tracing the fluid evolution of the Kiruna iron oxide apatite deposits using zircon, monazite, and whole rock trace elements and isotopic studies. Chem Geol 466:303–322

    Article  Google Scholar 

  • Williams PJ (1994) Iron mobility during synmetamorphic alteration in the Selwyn Range area, NW Queensland: implications for the origin of ironstone-hosted Au-Cu deposits. Miner Deposita 29(3):250–260

    Article  Google Scholar 

  • Williams-Jones AE, Heinrich CA (2005) Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Econ Geol 100(7):1287–1312

    Article  Google Scholar 

  • Young EJ, Myers AT, Munson EL, Conklin NM (1969) Mineralogy and geochemistry of fluorapatite from Cerro de Mercado, Durango, Mexico. US Geological Survey Professional Paper 650(D):D84–D93

    Google Scholar 

  • Zajacz Z, Halter WE, Pettke T, Guillong M (2008) Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions: controls on element partitioning. Geochim Cosmochim Ac 72:2169–2197

    Article  Google Scholar 

Download references

Acknowledgments

NLL acknowledges support from the Society of Economic Geologists student grant program, the University of Michigan Rackham Graduate School, and the Scott Turner Award and George Mitchell Fund in Earth & Environmental Sciences at the University of Michigan. ACS acknowledges support from the United States National Science Foundation grants EAR 1250239 and 1524394. ASW acknowledges support from the Turner Postdoctoral Fellowship at the University of Michigan. MR and FB acknowledge funding from the MSI grant “Millennium Nucleus for Metal Tracing along Subduction” NC130065, FONDECYT grant no. 1140780 and FONDAP project 15090013 “Centro de Excelencia en Geotermia de Los Andes, CEGA.” We thank Amanda Maslyn for her assistance with the mineral separation processes used to obtain apatite grains for the grain mounts. We thank Gordon Moore for his assistance with the microprobe and scanning electron microscope analyses. We also thank Jean Claude Barrette (University of Windsor) for his assistance with the laser ablation ICP-MS analyses. We thank Mr. Wizard, Dale Austin, for his assistance making the comparison plots. Finally, we would like to acknowledge geologists Mario Rojo, Rodrigo Munizaga, and Mario Lagos from Compañía Minera del Pacífico (CAP), for providing access to Los Colorados and logistical support during drill core and surface sampling. We thank Dan Harlov, an anonymous reviewer, AE Rolf Romer, and Editor Georges Beaudoin for their thoughtful comments and feedback that greatly improved the manuscript substantively and stylistically.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikita L. La Cruz.

Additional information

Editorial handling: R. L. Romer

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 15019 kb)

ESM 2

(CSV 104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La Cruz, N.L., Simon, A.C., Wolf, A.S. et al. The geochemistry of apatite from the Los Colorados iron oxide–apatite deposit, Chile: implications for ore genesis. Miner Deposita 54, 1143–1156 (2019). https://doi.org/10.1007/s00126-019-00861-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-019-00861-z

Keywords

Navigation