Skip to main content
Log in

Mineral chemistry of magnetite from magnetite-apatite mineralization and their host rocks: examples from Kiruna, Sweden, and El Laco, Chile

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Interpretation of the mineralizing environment of magnetite-apatite deposits remains controversial with theories that include a hydrothermal or magmatic origin or a combination of those two processes. To address this controversy, we have analyzed the trace element content of magnetite from precisely known geographic locations and geologic environments from the Precambrian magnetite-apatite ore and host rocks in Kiruna, Sweden, and the Pliocene-Holocene El Laco volcano in the Atacama desert of Chile. Magnetite samples from Kiruna have low trace element concentrations with little chemical variation between the ore, host, and related intrusive rocks. Magnetite from andesite at El Laco, and dacite from the nearby Láscar volcano, has high trace element concentrations typical of magmatic magnetite. El Laco ore magnetite have low trace element concentrations and displays growth zoning in incompatible elements (Si, Ca, and Ce), compatible elements (Mg, Al, and Mn), large-ion lithophile element (Sr), and high field strength element (Y, Nb, and Th). The El Laco ore magnetite are similar in composition to magnetite that has been previously interpreted to have crystallized from hydrothermal fluids; however, there is a significant difference in the internal zoning patterns. At El Laco, each zoned element is either enriched or depleted in the same layers, suggesting the magnetite crystallized from a volatile-rich, iron-oxide melt. In general, the compositions of magnetite from these two deposits plot in very wide fields that are not restricted to the proposed fields in published discriminant diagrams. This suggests that the use of these diagrams and genetic models based on them should be used with caution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alva-Vadivia LM, Rivas ML, Goguitchaichvili A, Urrutia-Fucugauchi J, Gonzalez JA, Morales J, Gómez S, Henríquez F, Nyström JO, Naslund RH (2003) Rock-magnetic and oxide microscopic studies of the El Laco ore deposits, Chilean Andes, and implications for magnetic anomaly modeling. Int Geol Rev 45:533–547

    Article  Google Scholar 

  • Barton MD, Johnson DA (1996) Evaporitic-source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization. Geology 24:259–262

    Article  Google Scholar 

  • Barton MD, Johnson DA (2004) Footprints of Fe-oxide(−Cu-Au) systems. SEG 2004: predictive mineral discovery under cover. Centre for Global Metallogeny, Spec Pub 33:112–116

    Google Scholar 

  • Bergman S, Kubler L, Martinsson O (2001) Description of regional geological and geophysical maps of northern Norrbotten County (east of the Caledonian orogen). Sveriges Geologiska Undersokning 56:110

    Google Scholar 

  • Blake KL (1992) The petrology, geochemistry and association to ore formation of the host rocks of the Kiirunavaara magnetite-apatite deposit, northern Sweden. PhD thesis. University of Wales College of Cardiff, 307 pp.

  • Buddington AF, Lindsley DG (1964) Iron-titanium oxide minerals and synthetic equivalents. J Petrol 5(2):310–357

    Article  Google Scholar 

  • Cliff RA, Rickard D, Blake K (1990) Isotope systematics of the Kiruna magnetite ores, Sweden: part 1. Age of the ore. Econ Geol 85:1770–1776

    Article  Google Scholar 

  • Dahl PS (1979) Comparative geothermometry based on major-element and oxygen isotope distributions in Precambrian metamorphic rocks from southwestern Montana. Am Mineral 64:1280–1293

    Google Scholar 

  • Dare SAS, Barnes S-J, Beaudoin G, Méric J, Boutroy E, Potvin-Doucet C (2014) Trace elements in magnetite as petrogenetic indicators. Mineral Deposita 49:785–796

    Article  Google Scholar 

  • Dare SAS, Barnes S-J, Beaudoin G (2015) Did the massive magnetite “lava flows” of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS. Mineral Deposita 50:607–617

    Article  Google Scholar 

  • Dupuis C, Beaudoin G (2011) Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineral Deposita 46:319–335

    Article  Google Scholar 

  • Dymek RF, Owens BE (2001) Petrogenesis of apatite-rich rocks (nelsonites and oxide-apatite gabbronorites) associated with massif anorthosites. Econ Geol 96:797–815

    Google Scholar 

  • Edfelt A, Armstrong RN, Smith M, Martinsson O (2005) Alteration paragenesis and mineral chemistry of the Tjarrojakka apatite-rion and Cu (−Au) occurrences, Kiruna area, northern Sweden. Mineral Deposita 40:409–434

    Article  Google Scholar 

  • Frietsch R (1978) On the magmatic origin of iron ores of the Kiruna type. Econ Geol 73:478–485

    Article  Google Scholar 

  • Frietsch R, Jan-Anders P (1995) Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types. Ore Geol Rev 9:489–510

    Article  Google Scholar 

  • Frietsch R, Tuisku P, Martinsson O, Perdahl JA (1997) Early Proterozoic Cu-(Au) and Fe ore deposits associated with regional Na-Cl metasomatism in northern Fennoscandia. Ore Geol Rev 12:1–34

  • Geijer P (1910) Igneous rocks and iron ores of Kiirunavaara, Luossavaara and Tuollavaara. Scientific and practical researches in Lapland arranged by the Luossavaara-Kiirunavaara Aktiebolag - Geology of the Kiruna district, 2: Stockholm, p. 278

  • Geijer P (1919) Recent developments at Kiruna. SGU, C 288:23

    Google Scholar 

  • Grigsby JD (1990) Detrital magnetite as a provenance indicator. J Sediment Petrol 60(6):940–951

    Google Scholar 

  • Groves DI, Bierlein FP, Meinert LD, Hitzman MW (2010) Iron oxide copper-gold (IOCG) through Earth’s history: implications for origin, lithospheric setting, and distinction from other epigenic iron oxide deposits. Econ Geol 105:641–654

    Article  Google Scholar 

  • Hallberg A, Bergman T, Gonzalez J, Larsson D, Morris GA, Perdahl JA, Ripa M, Niiranen T, Eilu P (2012) Metallogenic areas in Sweden. Survey of Finland, Special Paper 53:139–206

    Google Scholar 

  • Harlov DE, Andersson UB, Forster H-J, Nyström JO, Dulski P, Broman C (2002) Apatite-monazite relations in the Kiirunavaara magnetite-apatite ore, northern Sweden. Chem Geol 191:47–72

    Article  Google Scholar 

  • Henríquez F, Martin RF (1978) Crystal growth textures in magnetite flows and feeder dykes. El Laco, Chile, Can Miner 16:581–589

    Google Scholar 

  • Henríquez F, Naslund HR, Nyström JO, Vivallo W, Aguirre R, Dobbs FM, Lledó H (2003) New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile-a discussion. Econ Geol 98:1497–1502

  • Hildebrand RS (1986) Kiruna-type deposits—their origin and relationship to intermediate subvolcanic plutons in the great bear magmatic zone, northwest Canada. Econ Geol 81:640–659

    Article  Google Scholar 

  • Hitzman MW (2000) Iron oxide-Cu-Au deposits: what, where, when, and why. In T. M. Porter (Ed.), Hydrothermal iron oxide copper-gold & related deposits a global perspective (pp. 9–26). PGC Publishing, Adelaide

  • Hitzman MW, Oreskes N, Einaudi MT (1992) Geological characteristics and tectonic setting of Proterozoic iron-oxide (Cu-U-Au-REE) deposits. Precambrian Res 58:241–287

    Article  Google Scholar 

  • Jochum KP, Willbold M, Raczek I, Stoll B, Herwig K (2005) Chemical characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostandards and Geoanalytical Research 29(3):285–302

    Article  Google Scholar 

  • Kamenetsky VS, Charlier B, Zhitova L, Sharygin V, Davidson P, Feig S (2013) Magma chamber-scale liquid immiscibility in the Siberian Traps represented by melt pools in native iron. Geology 41(10):1091–1094

  • Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Wälle M, Heinrich CA, Holtz F, Munizaga R (2015) Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochim Cosmochim Acta 171:15–38

    Article  Google Scholar 

  • Lindsley DH (1976) The crystal chemistry and structure of oxide minerals as exemplified by the Fe-Ti oxides. In oxide minerals. Mineralogical Society of America, Short Course Notes 3:L-1 to L-60

  • Lindsley DH (1991) Oxide minerals: petrologic and magnetic significance. Reviews in Mineralogy, Volume 25, Stony Brook, New York, USA

  • LKAB (2015) Annual and sustainability report http://www.lkab.com/en/. Accessed 30 April 2016

  • Loberg BEH, Horndahl A-K (1983) Ferride geochemistry of Swedish Precambrian iron ores. Mineral Deposita 18:487–504

    Article  Google Scholar 

  • Martinsson O (1994) Greenstone and porphyry hosted ore deposits in northern Norbotten, NUTEK report nr 92-00752P: Luleå, p. 31.

  • Martinsson O (2004) Geology and metallogeny of the northern Norrbotten Fe-Cu-Au province: Society of Economic Geologists. Guidebook Series 33:131–148

    Google Scholar 

  • Martinsson O, Billström K, Broman C, Weihed P, Wanhainen C (2016) Metallogeny of the northern Norrbotten ore province, northern Fennoscandian shield with emphasis on IOCG and apatite-iron ore deposits. Ore Geol Rev. doi:10.1016/j.oregeorev.2016.02.011

    Google Scholar 

  • McCulloch MT, Gamble JA (1991) Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett 102:358–374

    Article  Google Scholar 

  • Mehdilo A, Irannajad M (2010) Applied mineralogical studies on Iranian hard rock titanium deposit. Journal of Minerals & Material Characterization & Engineering 9(3):247–262

    Article  Google Scholar 

  • Mucke A, Younessi R (1994) Magnetite-apatite deposits (Kiruna-type) along the Sanandaj-Sirjan zone and in the Bafq area. Iran, Associated with Ultramafic and Calcalkaline Rocks and Carbonatites: Mineralogy and Petrology 50:219–244

    Google Scholar 

  • Muller B, Axelsson MD, Bjorn O (2003) Trace elements in magnetite from Kiruna, northern Sweden, as determined by LA-ICP-MS. GFF 125:1–5

    Article  Google Scholar 

  • Nadoll P, Angerer T, Mauk JL, French D, Walshe J (2014) The chemistry of hydrothermal magnetite: a review. Ore Geol Rev 61:1–32

    Article  Google Scholar 

  • Nadoll P, Mauk JL, Leveille RA, Koenig AE (2015) Geochemistry of magnetite from porphry Cu and skarn deposits in the southwestern United States. Miner Deposita 50:493–515

  • Naranjo JA, Henríquez F, Nyström JO (2010) Subvolcanic contact metasomatism at El Laco Volcanic Complex, central Andes. Andean Geol 37:110–120

    Google Scholar 

  • Naslund HR, Henríquez FJ, Nyström JO, Vivallo W, Dobbs F (2002) Magmatic iron ores and associated mineralization: examples from the Chilean high Andes and Coastal Cordillera; in porter, T.M. (Ed.). Hydrothermal Iron Oxide Copper-Gold & Related Deposits: A Global Perspective, PGC Publishing, Adelaide 2:207–226

    Google Scholar 

  • Nyström JO, Henríquez F (1994) Magmatic features of iron ores of the Kiruna type in Chile and Sweden; ore textures and magnetite geochemistry. Econ Geol 89:820–839

    Article  Google Scholar 

  • Nyström JO, Billström K, Henríquez F, Fallick AE, Naslund HR (2008) Oxygen isotope composition of magnetite in iron ores of the Kiruna type in Chile and Sweden. GFF 130:177–188

    Article  Google Scholar 

  • Nyström JO, Henríquez F, Naranjo JA, Naslund HR (2016) Magnetite spherules in pyroclastic iron ore at El Laco, Chile. Am Mineral 101:587–595

    Article  Google Scholar 

  • Parák T (1975) Kiruna iron ores are not “intrusive-magmatic ores of the Kiruna type”. Econ Geol 70:1242–1258

    Article  Google Scholar 

  • Park CF (1961) A magnetite “flow” in northern Chile. Econ Geol 56:431–436

    Article  Google Scholar 

  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom 26:2508–2518. doi:10.1039/c1ja10172b

    Article  Google Scholar 

  • Philpotts AR (1967) Origin of certain iron-titanium oxide and apatite rocks. Econ Geol 62:303–315

    Article  Google Scholar 

  • Ramanaidou E, Wells M, Belton D (2008) Mineralogical and microchemical methods for the characterization of high-grade banded iron formation-derived iron ore. SEG Reviews 15:129–156

    Google Scholar 

  • Rhodes AL, Oreskes N (1999) Oxygen isotope composition of magnetite deposits at El Laco, Chile: evidence of formation from isotopically heavy fluids. Soc of Econ Geol, Spec Pub 7:333–351

    Google Scholar 

  • Romer RL, Martinsson O, Perdahl JA (1994) Geochronology of the Kiruna iron ores and hydrothermal alterations. Econ Geol 89:1249–1261

    Article  Google Scholar 

  • Rudnick R, Gao S (2003) Composition of the continental crust. Treatise Geochem 3:1–64

    Google Scholar 

  • Sabet-Mobarhan-Talab A, Alinia F, Ghannadpour S-S, Hezarkhani A (2015) Geology, geochemistry, and some genetic discussion of the Chadormalu iron oxide-apatite deposit, Bafq District, central Iran. Arab J Geosci 8:8399–8418

    Article  Google Scholar 

  • Sillitoe RH (2003) Iron oxide-copper-gold deposits: an Andean view. Mineral Deposita 38:787–812. doi:10.1007/s00126-003-0379-7

    Article  Google Scholar 

  • Sillitoe RH, Burrows DR (2002) New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile. Econ Geol 97:1101–1109

    Google Scholar 

  • Storey CD, Smith MP, Jeffries TE (2007) In situ LA-ICP-MS U-Pb dating of metavolcanics of Norrbotten, Sweden: records of extended geological histories in complex titanite grains. Chem Geol 240:163–181

  • Tassi F et al (2009) The magmatic- and hydrothermal-dominated fumarolic system at the active crater of Láscar volcano, northern Chile. Bull Volcanol 71:171–183

    Article  Google Scholar 

  • Tornos F, Velasco F, Hanchar JM (2016) Iron oxide melts, magmatic magnetite and superheated magmatic-hydrothermal systems: the El Laco deposit, Chile. Geology 44(6):427–430

    Article  Google Scholar 

  • Valley PM, Hanchar JM, Whitehouse MJ (2011) New insights on the evolution of the Lyon mountain granite and associated Kiruna-type magnetite-apatite deposits, Adirondack Mountains, New York state. Geosphere 7:357–389

    Article  Google Scholar 

  • Velasco F, Tornos F (2012) Insights on the effects of the hydrothermal alteration in the El Laco magnetite deposit (Chile). Revista de la Sociedad Española de Mineralogía 16:210–211

    Google Scholar 

  • Velasco F, Tornos F, and Hanchar, JM (2016) Immiscible iron- and silica-rich melts and magnetite geochemistry at El Laco volcano (northern Chile): Evidence for a magmatic origin for the magnetite deposits. Ore Geol Rev 79:346–366

  • Westhues A, Hanchar JM, Whitehouse MJ, Martinsson O (2016) New constraints on the timing of host rock emplacement, hydrothermal alteration and iron oxide apatite mineralization in and around Kiruna, Norrbotten region, northern Sweden. Econ Geol, in press

  • Williams PJ, Hedenquist JW, Barton MD, Johnson DA, Fontbote L, de Haller A, Mark G, Oliver NHS, Marschik R, Thompson JFH, Goldfarb RJ, Richards JP (2005) Iron oxide copper-gold deposits; geology, space-time distribution, and possible modes of origin. Econ Geol 100:371–405

    Google Scholar 

  • Zipkin AM, Hanchar JM, Brooks AS, Grabowski MW, Thompson JC, Gomani-Chindebvu E (2015) Ochre fingerprints: Distinguishing among Malawian mineral pigment sources with Homogenized Ochre Chip LAICPMS. Archaeometry 57:297–317. doi:10.1111/arcm.12090

Download references

Acknowledgements

We would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) discovery grant to JMH. The contribution of FT has been funded by the project SEIDI 2014 CGL2014-55949-R. Thanks to Luossavaara-Kiirunavaara Aktiebolag (LKAB) and Compañía Minera del Pacífico (CMP) for the help in logistics and permission to sample and granting access to the mine sites. We thank the reviewers (P. Williams and N. Oliver) for the thorough and constructive criticism of the original manuscript and to P. Williams for the comments on the revised manuscript. Thanks also to B. Lehmann for his review and editorial additions and handling of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Hanchar.

Additional information

Editorial handling: B. Lehmann

Electronic supplementary material

ESM 1

(XLSX 356 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broughm, S.G., Hanchar, J.M., Tornos, F. et al. Mineral chemistry of magnetite from magnetite-apatite mineralization and their host rocks: examples from Kiruna, Sweden, and El Laco, Chile. Miner Deposita 52, 1223–1244 (2017). https://doi.org/10.1007/s00126-017-0718-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-017-0718-8

Keywords

Navigation