Skip to main content

Advertisement

Log in

Methane origin and oxygen-fugacity evolution of the Baogutu reduced porphyry Cu deposit in the West Junggar terrain, China

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Most porphyry copper deposits worldwide contain magnetite, hematite, and anhydrite in equilibrium with hypogene copper-iron sulfides (chalcopyrite, bornite) and have fluid inclusions with CO2 >> CH4 that are indicative of high fO2. In contrast, the Baogutu porphyry Cu deposit in the West Junggar terrain (Xinjiang, China) lacks hematite and anhydrite, contains abundant pyrrhotite and ilmenite in equilibrium with copper-iron sulfides (chalcopyrite), and has fluid inclusions with CH4 >> CO2 that are indicative of low fO2. The mineralized intrusive phases at Baogutu include the main-stage diorite stock and minor late-stage diorite porphyry dikes. The main-stage stock underwent fractional crystallization and country-rock assimilation-contamination, and consists of dominant diorite and minor gabbro and tonalite porphyry. The country rocks contain organic carbons (0.21–0.79 wt.%). The δ13CvPDB values of the whole rocks (−23.1 to −25.8 ‰) in the wall rocks suggest a sedimentary organic carbon source. The δ13CvPDB values of CH4 (−28.2 to −36.0 ‰) and CO2 (−6.8 to −20.0 ‰) in fluid inclusions require an organic source of external carbon and equilibration of their Δ13CCO2-CH4 values (8.2–25.0 ‰) at elevated temperatures (294–830 °C) suggesting a significant contribution of thermogenic CH4. Mineral composition data on the main-stage intrusions, such as clinopyroxene, hornblende, biotite, magnetite, ilmenite, sphene, apatite, and pyrrhotite, suggest that the primary magma at Baogutu was oxidized and became reduced after emplacement by contamination with country rocks. Mineral compositions and fluid inclusion gas compositions suggest that the redox state of the system evolved from logfO2 > FMQ + 1 in the magma stage, to logfO2 < FMQ as a consequence of country rocks assimilation-contamination, to logfO2 > FMQ in the hydrothermal stage. Though oxidized magma was emplaced initially, assimilation-contamination of carbonaceous country rocks decreased its fO2 such that exsolved fluids contained abundant CH4 and deposited a reduced assemblage of minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ague JJ, Brimhall GH (1988) Magmatic arc asymmetry and distribution of anomalous plutonic belts in the batholiths of California: effects of assimilation, crustal thickness, and depth of crystallization. Geol Soc Am Bull 100:912–927

    Article  Google Scholar 

  • Audétat A, Pettke T, Heinrich CA, Bodnar RJ (2008) The composition of magmatic-hydrothermal fluids in barren and mineralized intrusions. Econ Geol 103:877–908

    Article  Google Scholar 

  • Bréas O, Guillou C, Reniero F, Wada E (2001) The global methane cycle: isotopes and mixing ratios, sources and sinks. Isot Environ Health Stud 37:257–379

    Article  Google Scholar 

  • Buddington AF, Lindsley DH (1964) Iron-titanium oxide minerals and synthetic equivalents. J Petrol 5:310–357

    Article  Google Scholar 

  • Burke EA (2001) Raman microspectrometry of fluid inclusions. Lithos 55:139–158

    Article  Google Scholar 

  • Candela PA (1989) Felsic magmas, volatiles, and metallogenesis. In: Whitney JA, Naldrett AJ (eds) Ore deposition associated with magmas. Rev Econ Geol 4:223–233

  • Chou IM (1987) Oxygen buffer and hydrogen sensor techniques at elevated pressures and temperatures. In: Ulmer GC, Barnes HL (eds) Hydrothermal experimental techniques. John Wiley, Chichester, pp 61–99

    Google Scholar 

  • Cinti D, Procesi M, Tassi F, Montegrossi G, Sciarra A, Vaselli O, Quattrocchi F (2011) Fluid geochemistry and geothermometry in the western sector of the Sabatini Volcanic District and the Tolfa mountains (central Italy). Chem Geol 284:160–181

    Article  Google Scholar 

  • Cooke DR, Hollings P, Walshe JL (2005) Giant porphyry deposits: characteristics, distribution, and tectonic controls. Econ Geol 100:801–818

    Article  Google Scholar 

  • D’Amore F, Panichi C (1980) Evaluation of deep temperature of hydrothermal systems by a new gas geothermometer. Geochim Cosmochim Acta 44:549–556

    Article  Google Scholar 

  • Dilles JH, Einaudi MT (1992) Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit, Nevada: a 6-km vertical reconstruction. Econ Geol 87:1963–2001

    Article  Google Scholar 

  • Fiebig J, Chiodini G, Caliro S, Rizzo A, Spangenberg J, Hunziker JC (2004) Chemical and isotopic equilibrium between CO2 and CH4 in fumarolic gas discharges: generation of CH4 in arc magmatic-hydrothermal systems. Geochim Cosmochim Acta 68:2321–2334

    Article  Google Scholar 

  • Fiebig J, Woodland AB, Alessandro WD, Püttmann W (2009) Excess methane in continental hydrothermal emissions is abiogenic. Geology 37:495–498

  • Fiebig J, Woodland AB, Spangenberg J, Oschmann W (2007) Natural evidence for rapid abiogenic hydrothermal generation of CH4. Geochim Cosmochim Acta 71:3028–3039

    Article  Google Scholar 

  • Foster MD (1960) Interpretation of the composition of trioctahedral micas. U S Geol Surv Prof Pap 354B:11–49

    Google Scholar 

  • Giggenbach WF (1987) Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl Geochem 2:143–161

    Article  Google Scholar 

  • Giggenbach WF (1995) Variations in the chemical and isotopic composition of fluids discharged from the Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 68:89–116

    Article  Google Scholar 

  • Giggenbach WF (1997) Relative importance of thermodynamic and kinetic processes in governing the chemical and isotopic composition of carbon gases in high-heatflow sedimentary systems. Geochim Cosmochim Acta 61:3763–3785

    Article  Google Scholar 

  • Gustafson LB, Hunt JP (1975) The porphyry copper deposit at El Salvador, Chile. Econ Geol 70:857–912

    Article  Google Scholar 

  • Gustafson LB, Quiroga J (1995) Patterns of mineralization and alteration below the porphyry copper orebody at El Salvador, Chile. Econ Geol 90:2–16

    Article  Google Scholar 

  • Halter (2005) Magma evolution and the formation of porphyry Cu-Au ore fluids: evidence from silicate and sulfide melt inclusions. Miner Depos 39:845–863

    Article  Google Scholar 

  • Hedenquist JW, Lowenstern JB (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature 370:519–527

    Article  Google Scholar 

  • Holloway JR (1984) Graphite–CH4–H2O–CO2 equilibria at low grade metamorphic conditions. Geology 12:455–458

    Article  Google Scholar 

  • Horita J (2001) Carbon isotope exchange in the system CO2-CH4 at elevated temperatures. Geochim Cosmochim Acta 65:1907–1919

    Article  Google Scholar 

  • Horita J, Berndt ME (1999) Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285:1055–1057

    Article  Google Scholar 

  • Hunt JM (1996) Petroleum geochemistry and geology. W.H. Freeman and Company, New York

    Google Scholar 

  • Jenden PD, Hilton DR, Kaplan IR, Craig H (1993) Abiogenic hydrocarbons and mantle helium in oil and gas fields. In: Howell DG (ed) The future of energy gases—USGS Professional Paper 1570. United States Geological Survey, Washington, DC, pp 57–82

  • Jugo P, Luth R, Richards J (2005) Experimental data on the speciation of sulfur as a function of oxygen fugacity in basaltic melts. Geochim Cosmochim Acta 69:497–503

    Article  Google Scholar 

  • Kirkham RV, Sinclair WD (1995) Porphyry copper, gold, molybdenum, tungsten, tin, silver. In: Eckstrand OR, Sinclair WD, Thorpe RI (eds) Geology of Canadian mineral deposit types: geological survey of Canada, Geology of Canada 8:421–446

  • Klimm K, Holtz F, Johannes W, King PL (2003) Fractionation of metaluminous A-type granites: an experimental study of the Wangrah Suite, Lachlan Fold Belt, Australia. Precambrian Res 124:327–341

    Article  Google Scholar 

  • Leake BE (1997) Nomenclature of amphiboles: report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineral Mag 61:295–321

    Article  Google Scholar 

  • Li HW, Feng LJ, Li TJ, Chen J, Liu W (2014) Combination of sealed-tube decrepitation with continuous-flow isotope ratio mass spectrometry for carbon isotope analyses of CO2 from fluid inclusions in minerals. Anal Methods 6:4504–4506

    Article  Google Scholar 

  • Matthews SJ, Moncrieff DHD, Carroll MR (1999) Empirical calibration of the sulphur valence oxygen barometer from natural and experimental glasses: method and applications. Mineral Mag 63:421–431

    Article  Google Scholar 

  • McCollom TM, Seewald JS (2001) A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine. Geochim Cosmochim Acta 65:3769–3778

    Article  Google Scholar 

  • Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Am Mineral 73:1123–1133

    Google Scholar 

  • Mungall JE (2002) Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits. Geology 30:915–918

    Article  Google Scholar 

  • Panichi C, Ferrara GC, Gonfiantini R (1977) Isotope geothermometry in the Larderello geothermal field. Geothermics 5:81–88

    Article  Google Scholar 

  • Parat F, Holtz F (2005) Sulfur partition coefficient between apatite and rhyolite: the role of bulk S content. Contrib Mineral Petrol 150:643–651

    Article  Google Scholar 

  • Parat F, Dungan MA, Streck MJ (2002) Anhydrite, pyrrhotite and sulfur-rich apatite: tracing the sulfur evolution of an Oligocene andesite (Eagle Mountain, CL, USA). Lithos 64:63–75

    Article  Google Scholar 

  • Prouteau G, Scaillet B (2003) Experimental constraints on the origin of the 1991 Pinatubo dacite. J Petrol 44:2203–2241

    Article  Google Scholar 

  • Rabbia OM, Hernández LB, French DH, King RW, Ayers JC (2009) The El Teniente porphyry Cu-Mo deposit from a hydrothermal rutile perspective. Mineral Deposita 44:849–866

    Article  Google Scholar 

  • Richards JP (2003) Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Econ Geol 98:1515–1533

    Article  Google Scholar 

  • Ridolfi F, Renzulli A (2012) Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1,130°C and 2.2 GPa. Contrib Mineral Petrol 163:877–895

    Article  Google Scholar 

  • Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral Petrol 160:45–66

    Article  Google Scholar 

  • Rowins SM (1999) Reduced porphyry copper-gold deposits: a newly recognized style of gold mineralization. Geol Soc Am Abstr Programs 31(7):A-92

    Google Scholar 

  • Rowins SM (2000) Reduced porphyry copper-gold deposits: a new variation on an old theme. Geology 28:491–494

    Article  Google Scholar 

  • Rusk B, Reed M (2002) Scanning electron microscope-cathodoluminescence analysis of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit, Montana. Geology 30:727–730

    Article  Google Scholar 

  • Scaillet B, Evans BW (1999) The 15 June 1991 eruption of Mount Pinatubo. I. Phase equilibria and pre-eruption P–T–fO2–fH2O conditions of the dacite magma. J Petrol 40:381–411

    Article  Google Scholar 

  • Schmidt MW (1992) Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contrib Mineral Petrol 110:304–310

    Article  Google Scholar 

  • Schoell M (1988) Multiple origins of methane in the Earth. Chem Geol 71:1–10

    Article  Google Scholar 

  • Shen P, Pan HD (2013) Country-rock contamination of magmas associated with the Baogutu porphyry Cu deposit, Xinjiang, China. Lithos 177:451–469

    Article  Google Scholar 

  • Shen P, Shen YC, Liu TB, Meng L, Dai HW, Yang YH (2009) Geochemical signature of porphyries in the Baogutu porphyry copper belt, western Junggar, NW China. Gondwana Res 16:227–242

    Article  Google Scholar 

  • Shen P, Shen YC, Pan HD, Wang JB, Zhang R, Zhang YX (2010a) Baogutu porphyry Cu-Mo-Au deposit, West Junggar, Northwest China: petrology, alteration, and mineralization. Econ Geol 105:947–970

    Article  Google Scholar 

  • Shen P, Shen YC, Wang JB, Zhu HP, Wang LJ, Meng L (2010b) Methane-rich fluid evolution of the Baogutu porphyry Cu-Mo-Au deposit, Xinjiang, NW China. Chem Geol 275:78–98

    Article  Google Scholar 

  • Shen P, Shen YC, Pan HD (2011) Character of the reduced porphyry Cu deposits in western Junggar. International workshop on the large Balkash-western Junggar copper-gold province. 75–80

  • Shen P, Shen YC, Li XH, Pan HD, Zhu HP, Meng L (2012a) Northwestern Junggar Basin, Xiemisitai Mountains, China: a geochemical and geochronological approach. Lithos 140–141:103–118

    Article  Google Scholar 

  • Shen P, Shen YC, Pan HD, Li XH, Dong LH, Wang JB, Zhu HP, Dai HW, Guan WN (2012b) Geochronology and isotope geochemistry of the Baogutu porphyry copper deposit in the West Junggar region, Xinjiang, China. J Asian Earth Sci 49:99–115

    Article  Google Scholar 

  • Shen P, Pan HD, Xiao WJ, Li XH, Dai HW, Zhu HP (2013) Early Carboniferous intra-oceanic arc and back-arc basin system in the West Junggar, NW China. Int Geol Rev 55:1991–2007

    Article  Google Scholar 

  • Shen P, Pan HD, Xiao WJ, Shen YC (2014) An Ordovician intra-oceanic subduction system influenced by ridge subduction in the West Junggar, Northwest China. Int Geol Rev 56(2):206–223

    Article  Google Scholar 

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41

    Article  Google Scholar 

  • Smith CM, Canil D, Rowins SM, Friedman R (2012) Reduced granitic magmas in an arc setting: the Catface porphyry Cu–Mo deposit of the Paleogene Cascade Arc. Lithos 154:361–373

    Article  Google Scholar 

  • Song HX, Liu YL, Qu WJ, Song B, Zhang R, Cheng Y (2007) Geological characters of Baogutu porphyry copper deposit in Xinjiang, NW China. Acta Petrol Sin 23:1891–1988 (in Chinese with English abstract)

    Google Scholar 

  • Streck MJ, Dilles JH (1998) Sulfur evolution of oxidized arc magmas as recorded in apatite from a porphyry copper batholith. Geology 26(6):523–526

    Article  Google Scholar 

  • Tarantola A, Mullis J, Guillaume D, Dubessy J, de Capitani C, Abdelmoula M (2009) Oxidation of CH4 to CO2 and H2O by chloritization of detrital biotite at 270 ± 5 °C in the external part of the Central Alps, Switzerland. Lithos 112:497–510

  • Ueno Y, Yamada K, Yoshida N, Maruyama S, Isozaki Y (2006) Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440:516–519

    Article  Google Scholar 

  • Welhan JA (1988) Origins of methane in hydrothermal systems. Chem Geol 71:183–198

    Article  Google Scholar 

  • Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314

    Article  Google Scholar 

  • Whitney JA (1984) Volatiles in magmatic systems. In: Henley RW, et al., (eds) Fluid-mineral equilibria in hydrothermal systems. Rev Econ Geol 1:155–175

  • Wones DR, Eugster HP (1965) Stability of biotite—experiment theory and application. Am Mineral 50:1228–1272

    Google Scholar 

  • Xiao WJ, Han CM, Yuan C, Sun M, Lin SF, Chen HL, Li ZL, Li JL, Sun S (2008) Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: implications for the tectonic evolution of central Asia. J Asian Earth Sci 32:102–117

    Article  Google Scholar 

  • Zhu HP, Wang LJ (2000) Determining gaseous composition of fluid inclusions with Quadrupole Mass Spectrometer. Sci China D 31:586–590 (in Chinese)

    Google Scholar 

  • Zhu MT, Wu G, Xie HJ, Liu J, Mei M (2012) Geochronology and fluid inclusion studies of the Lailisigaoer and Lamasu porphyry–skarn Cu–Mo deposits in Northwestern Tianshan, China. J Asian Earth Sci 49:116–130

    Article  Google Scholar 

Download references

Acknowledgments

We are very grateful to Editor-in-chief Georges Beaudoin, associate editor T. Wagner, and two reviewers for constructive comments and improvement of the manuscript. Editor-in-chief Georges Beaudoin and one reviewer have also carefully provided detailed corrections which substantially improved the presentation. We are indebted to H.P. Zhu for help during the gas compositions analysis, Q. Mao for help during the mineral composition analysis, and L.J. Feng for help during the carbon isotope analysis. This paper was financially supported by the National Natural Science Foundation of China (Grant No. U1303293, 41390442, 41272109, 40972064), Key Deployment Project of the Chinese Academy of Sciences (Grant No. KJZD-EW-TZ-G07), National International Cooperation in Science and Technology Project (Grant No. 2010DFB23390), and National 305 Project (Grant No. 2011BAB06B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Shen.

Additional information

Editorial handling: G. Beaudoin and T. Wagner

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, P., Pan, H. Methane origin and oxygen-fugacity evolution of the Baogutu reduced porphyry Cu deposit in the West Junggar terrain, China. Miner Deposita 50, 967–986 (2015). https://doi.org/10.1007/s00126-015-0580-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-015-0580-5

Keywords

Navigation