Skip to main content
Log in

The El Teniente porphyry Cu–Mo deposit from a hydrothermal rutile perspective

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Mineralogical, textural, and chemical analyses (EPMA and PIXE) of hydrothermal rutile in the El Teniente porphyry Cu–Mo deposit help to better constrain ore formation processes. Rutile formed from igneous Ti-rich phases (sphene, biotite, Ti-magnetite, and ilmenite) by re-equilibration and/or breakdown under hydrothermal conditions at temperatures ranging between 400°C and 700°C. Most rutile nucleate and grow at the original textural position of its Ti-rich igneous parent mineral phase. The distribution of Mo content in rutile indicates that low-temperature (∼400–550°C), Mo-poor rutile (5.4 ± 1.1 ppm) is dominantly in the Mo-rich mafic wallrocks (high-grade ore), while high-temperature (∼550-700°C), Mo-rich rutile (186 ± 20 ppm) is found in the Mo-poor felsic porphyries (low-grade ore). Rutile from late dacite ring dikes is a notable exception to this distribution pattern. The Sb content in rutile from the high-temperature potassic core of the deposit to its low-temperature propylitic fringe remains relatively constant (35 ± 3 ppm). Temperature and Mo content of the hydrothermal fluids in addition to Mo/Ti ratio, modal abundance and stability of Ti-rich parental phases are key factors constraining Mo content and provenance in high-temperature (≥550°C) rutile. The initial Mo content of parent mineral phases is controlled by melt composition and oxygen fugacity as well as timing and efficiency of fluid–melt separation. Enhanced reduction of SO2-rich fluids and sulfide deposition in the Fe-rich mafic wallrocks influences the low-temperature (≤550°C) rutile chemistry. The data are consistent with a model of fluid circulation of hot (>550°C), oxidized (ƒO2 ≥ NNO + 1.3), SO2-rich and Mo-bearing fluids, likely exsolved from deeper crystallizing parts of the porphyry system and fluxed through the upper dacite porphyries and related structures, with metal deposition dominantly in the Fe-rich mafic wallrocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ayers JC, Watson EB (1993) Rutile solubility and mobility in supercritical aqueous fluids. Contrib Mineral Petrol 114:321–330

    Article  Google Scholar 

  • Beane RE, Titley SR (1981) Porphyry copper deposits. Part II. Econ Geol 75:214–269

    Google Scholar 

  • Blount CW, Dickinson FW (1969) The solubility of anhydrite (CaSO4) in NaCl–H2O from 100 to 450°C and 1 to 1,000 bars. Geochem Cosmochim Acta 33:227–245

    Article  Google Scholar 

  • Camus F (1975) Geology of El Teniente orebody with emphasis on wall-rock alternation. Econ Geol 70:1341–1372

    Article  Google Scholar 

  • Candela PA (1997) A review of shallow, ore-related granites: textures, volatiles and ore metals. J Petrol 38:1619–1633

    Article  Google Scholar 

  • Candela PA, Bouton SL (1990) The influence of oxygen fugacity on tungsten and molybdenum partitioning between silicate melt and ilmenite. Econ Geol 85:633–640

    Article  Google Scholar 

  • Candela PA, Holland HD (1984) The partitioning of copper and molybdenum between silicate melts and aqueous fluids. Geochim Cosmochim Acta 48:373–380

    Article  Google Scholar 

  • Cannell J, Cooke DR, Stein HJ, Markey R (2003) New paragenetically constrained Re-Os molybdenite ages for El Teniente Cu-Mo porphyry deposit, central Chile. In: Eliopoulos et al (eds) Mineral exploration and sustainable development. Millpress, Rotterdam, pp 255–258

    Google Scholar 

  • Cannell J, Cooke D, Walshe J, Stein H (2005) Geology, mineralization, alteration, and structural evolution of the El Teniente porphyry Cu–Mo deposit. Econ Geol 100:979–1003

    Article  Google Scholar 

  • Cannell J, Cooke D, Walshe J, Stein H (2007) Geology, mineralization, alteration and structural evolution of El Teniente porphyry Cu–Mo deposit—a reply. Econ Geol 102:1171–1180

    Article  Google Scholar 

  • Cao X (1989) Solubility of molybdenite and the speciation of molybdenum in hydrothermal solutions: Unpublished PhD thesis, Ames, Iowa State University, 102 p

  • Carroll MR, Rutherford MJ (1985) Sulfide and sulfate saturation in hydrous magmas. Proc 15th Lunar Plan Sci Conf. J Geophys Res 90:C601–612

    Google Scholar 

  • Carroll MR, Webster JD (1994) Sulfur, noble gases, and halogens: solubility relations of the less abundant volatile species in magmas. In Carroll MR, Holloway JR (eds). Rev Mineral 30:331-371

  • Chambefort I, Dilles JH, Kent AJR (2008) Anhydrite-bearing andesite and dacite as a source for sulfur in magmatic–hydrothermal mineral deposits. Geology 36:719–722

    Article  Google Scholar 

  • Cuadra P (1986) Geocronología K–Ar del yacimiento El Teniente y áreas adyacentes. Rev Geol Chile 27:3–26

    Google Scholar 

  • Czamanske GK, Force ER, Moore WJ (1981) Some geologic and potential resources aspects of rutile in porphyry copper deposits. Econ Geol 76:2240–2245

    Article  Google Scholar 

  • Fitton JG (1995) Coupled molybdenum and niobium depletion in continental basalts. Earth Planet Sci Lett 136:715–721

    Article  Google Scholar 

  • Force ER (1991) Geology of titanium-mineral deposits. GSA, Special Paper 259, 112 p

  • Ghiorso MS, Sack RO (1991) Thermochemistry of the oxide minerals. In: DH Lindsley (ed) Oxide Minerals: Petrologic and Magnetic Significance, Mineralogical Society of America Reviews in Mineralogy 25:221-264

  • González RA (2006) Petrografía, geoquímica y microtermometría de los intrusivos félsicos del sector norte del yacimiento El Teniente. Memoria de Título, Univer. de Concepción, 149 p

  • Gunow AJ (1983) Trace element mineralogy in the porphyry molybdenum environment. PhD Tesis, University of Colorado, 304 p

  • Guzmán C (1991) Alteración y mineralización de los pórfidos dioríticos del sector central, yacimiento El Teniente, Unpubl BSc thesis, Santiago, Universidad de Chile, 145 p

  • Haggerty SE (1991) Oxide textures—a mini atlas. In: Lindsley DH (ed) Oxide minerals: petrologic and magnetic significance. Rev Mineral 25:129-219

  • Hattori KH, Guillot S (2003) Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology 31:525–528

    Article  Google Scholar 

  • Hernández LB, Rabbia OM, King RW, López-Escobar L (2002) Sulfur-rich apatite from intrusive rocks associated with the supergiant El Teniente porphyry Cu-Mo deposit, Chile. 18th General Meeting of the Int Miner Assoc, Mineralogy for the Millennium, Progr with abstracts, Edinburgh, Scotland, p 268

  • Hernández LB, Rabbia OM, King RW, Lopéz Escobar L (2004) Metasomatic monazite in apatites from felsic porphyries related to Cu-Mo mineralization. Abstract, Goldschmidt Conference, Geochim Cosmochim Acta 68: A309

  • Howell FH, Molloy JS (1960) Geology of the Braden orebody, Chile, South America. Econ Geol 55:863–905

    Article  Google Scholar 

  • Kay SM, Mpodozis C, Coira B (1999) Neogene magmatism, tectonism and mineral deposits of the Central Andes (22º-33ºS). In Skinner BJ (ed), Geology and ore deposits of the Central Andes. Soc Econom Geol, Spec Publ 7:27-59

  • Keith JD, Whitney JA, Hattori K, Ballantyne GH, Christiansen EH, Barr DL, Cannan TM, Hook CJ (1997) The role of magmatic sulfides and mafic alkaline magmas in the Bingham and Tintic Mining Districts, Utah. J Petrol 38:1679–1690

    Article  Google Scholar 

  • Keppler H, Wyllie PJ (1991) Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite–H2O–HCl and haplogranite–H2O–HF. Contrib Mineral Petrol 109:139–150

    Article  Google Scholar 

  • Klemm LM, Pettke T, Heinrich CA, Campos E (2007) Hydrothermal evolution of the El Teniente deposit (Chile): porphyry Cu-Mo ore deposition from low-salinity magmatic fluids. Econ Geol 102:1021–1045

    Article  Google Scholar 

  • Kusakabe M, Nakagawa S, Hori M, Matsuhisa Y, Ojeda JM, Serrano L (1984) Oxygen and sulfur isotopic compositions of quartz, anhydrite and sulfide minerals from the El Teniente and Río Blanco porphyry copper deposits, Chile. Bull Geol Surv Japan 35:583–614

    Google Scholar 

  • Kusakabe M, Nakagawa S, Hori M, Matsuhisa Y (1990) Primary mineralization-alteration of the El Teniente and Río Blanco porphyry copper deposits, Chile: stable isotope, fluid inclusion and Mg+2/Fe+2/Fe+3 ratios of hydrothermal fluids. In: Herbert HK, Ho SE (eds) Stable isotopes and fluid processes in mineralization. Univ. of Western Australia Press, Perth, pp 244–259

    Google Scholar 

  • Larocque ACL, Stimac JA, Keith JD, Huminicki MAE (2000) Evidence for open-system behavior in immiscible Fe–S–O liquids in silicate magmas: implications for contributions of metals and sulfur to ore-forming fluids. Can Mineral 38:1233–1249

    Article  Google Scholar 

  • Lowell JD, Guilbert JM (1970) Lateral and vertical alteration–mineralization zoning in porphyry copper deposits. Econ Geol 65:373–408

    Article  Google Scholar 

  • Luhr JF, Carmichael ISE, Varekamp JC (1984) The 1982 eruptions of El Chichón Volcano, Chiapas, Mexico: mineralogy and petrology of the anhydrite-bearing pumices. J Volcan Geoth Res 23:69–108

    Article  Google Scholar 

  • Maksaev V, Munizaga F, McWilliams M, Fanning M, Mathur R, Ruiz J, Thiele K (2002) El Teniente porphyry copper deposit in the Chilean Andes: new geochronological timeframe and duration of hydrothermal activity. GSA Meeting 2002, Abstract, 34:336

    Google Scholar 

  • Maksaev V, Munizaga F, McWilliams M, Fanning M, Mathur R, Ruiz J, Zentilli M (2004) New chronology for the El Teniente, Chilean Andes, from U-Pb, 40Ar/39Ar, Re-Os, and fission-track dating: implications for the evolution of a supergiant porphyry Cu-Mo deposit. Econ Geol Spec Publ 11:15–54

    Google Scholar 

  • Mason B (1966) Principles of geochemistry, 3rd edn. Wiley, p 329

  • Munizaga F, Maksaev V, Mathur R, Ruiz J, McWilliams M, Thiele K (2002) Understanding molybdenite Re-Os ages from the El Teniente porphyry copper deposit, Chile. GSA Meeting Abstr with Progr 34:336

    Google Scholar 

  • Nash WP, Crecraft HR (1985) Partition coefficients for trace elements in silicic magmas. Geochim Cosmochim Acta 49:2309–2322

    Article  Google Scholar 

  • Ojeda JM, Hernández E, Ossandón G, Enrione A, Mestre A (1980) El Pórfido cuprífero El Teniente. CODELCO, Chile, p 72 IR, Superintendencia de geología de El Teniente

    Google Scholar 

  • O’Neill HSC, Eggins SM (2002) The effect of melt composition on trace element partitioning: an experimental investigation of the activity coefficients of FeO, NiO, CoO, MoO2 and MoO3 in silicate melts. Chem Geol 186:151–181

    Article  Google Scholar 

  • Ossandón G (1974) Petrografía y alteración del pórfido dacítico, yacimiento El Teniente. Universidad de Chile, Memoria de Título, 116 p

  • Piccoli P, Candela P, Rivers M (2000) Interpreting magmatic processes from accessory phases: titanite—a small-scale recorder of large-scale processes. Transact R Soc Edingburgh: Earth Sci 9:257–257

    Google Scholar 

  • Rabbia OM (2002) Cristaloquímica de rutilo y anatasa en sistemas de pórfidos cupríferos andinos: evaluación de su uso como monitores de la actividad de metales en fluidos hidrotermales corticales. Unpublished PhD thesis, Universidad de Chile, 147 p

  • Rabbia OM, Reich M, Hernández LB, King RW, López-Escobar L (2000) High-Al TTG-like suite at the El Teniente porphyry copper deposit, Chile. Ext Abstr, IX Congr Geol Chileno, July 31- August 4, Puerto Varas, Chile. 5:326–329

    Google Scholar 

  • Rabbia OM, Hernández LB, King RW, López-Escobar L (2001) Sr-Nd-Pb isotope compositions of felsic intrusions in the El Teniente and Laguna La Huifa areas, central Chile. Ext Abstr, III South American Symposium on Isotope Geology, 10/21-24th, Pucón, Chile. CD format

  • Rabbia OM, Hernández LB, Townley B, King RW, Ayers JC (2003) Anatase-bearing veins in the El Teniente Cu-Mo porphyry system. Special Symposium on Supergiant Andean Porphyry Copper Deposits. 10°Cong Geol Chileno. October 6-10, Concepción, Chile, CD-format

  • Reich MH (2001) Estudio petrográfico, mineraloquímico y geoquímico de los cuerpos intrusivos de Sewell y La Huifa, Yacimiento El Teniente, VI Región, Chile. Memoria de Título, Universidad de Concepción, 111 p

  • Ribbe PH (1982) Titanite. In: Ribbe PH (ed) Orthosilicates. Rev Mineral 5:37-155

  • Rojas A (2002) Petrografía y geoquímica del pórfido Teniente, ubicado en el sector norte del yacimiento El Teniente, Provincia de Cachapoal, VI Region, Chile, Memoria de Título, Universidad de Concepción, 133 p

  • Ryan CG, Cousens DR, Sie SH, Griffin WL, Suter GF, Clayton E (1990) Quantitative PIXE microanalysis of geological material using the CSIRO proton microprobe. Nucl Instr Meth B47:55–71

    Google Scholar 

  • Scaillet B, Evans BW (1999) The 15 June 1991 eruption of Mount Pinatubo. I. Phase equilibria and pre-eruption P–T–ƒO2–ƒH2O conditions of the dacitic magma. J Petrol 40:381–411

    Article  Google Scholar 

  • Scaillet B, Clemente B, Evans BW, Pichavant M (1998) Redox control of sulfur degassing in silicic magmas. J Geophys Res 103:B10:23,937-23,949

  • Skewes A (2000) Rocas ígneas de la mina El Teniente. CODELCO Internal report 94 p

  • Skewes MA, Arévalo AG (2000) El complejo de gabros y diabasas que hospeda a las brechas mineralizadas del depósito de cobre El Teniente. Chile central, IX Cong Geol Chileno, Puerto Varas 1:380–384

    Google Scholar 

  • Skewes A, Stern CR (2007) Geology, mineralization, alteration and structural evolution of El Teniente porphyry Cu-Mo deposit—discussion: Econ Geol 102:1165-1170

    Google Scholar 

  • Skewes A, Arevalo A, Holmgren C, Stern CR (2001) Stable isotope evidence for the formation from magmatic fluids of the mineralized breccias in the Los Bronces and El Teniente copper deposits, Central Chile: III Simposio Sudamericano de Geología Isotópica, Pucón, Chile, Extended abstracts, CD-ROM, pp 531-534

  • Skewes A, Arevalo A, Floody R, Zuñiga P, Stern CR (2002) The El Teniente Breccia deposit: hypogene copper distribution and emplacement. Soc Econ Geol, Spec Publ 9:299–332

    Google Scholar 

  • Skewes A, Arevalo A, Floody R, Zuñiga P, Stern CR (2005) The El Teniente megabreccia deposit, The world’s largest deposit. In Poter TM (ed) Super porphyry copper and gold deposits- a global perspective: Porter Geoscience Consultancy Publishing, Adelaide, Australia. 1:83-113

  • Sillitoe RH, Perelló J (2005) Andean copper province: tectonomagmatic settings, deposits types, metallogeny, exploration, and discovery. In Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Econ Geol One Hundredth Anniversary Volume:845-891

  • Stimac J, Hickmott D (1994) Trace-element partition-coefficients for ilmenite, ortho-pyroxene and pyrrhotite in rhyolite determined by micro-pixe analysis. Chem Geol 117:313–330

    Article  Google Scholar 

  • Tacker RC, Candela PA (1987) Partitioning of molybdenum between magnetite and melt. A preliminary experimental study of partitioning of ore metals between silicic magmas and crystalline phases. Econ Geol 82:1827–1838

    Article  Google Scholar 

  • Tomkins HS, Powell R, Ellis DJ (2007) The pressure dependence of the zirconium-in-rutile thermometer. J Metam Geol 25:703–713

    Article  Google Scholar 

  • Udubasa G (1982) Rutile of post-magmatic mineral formation. In: GC Amstutz (ed) Ore genesis - the state of the art. Berlin, Springer, 784-793

  • Ulrich T, Mavrogenes J (2008) An experimental study of the solubility of molybdenum in H2O and KCl–H2O solutions from 500 to 800°C, and 150 to 300 MPa. Geochim Cosmochim Acta 72:2316–2330

    Article  Google Scholar 

  • Williams S, Cesbron F (1977) Rutile and apatites: useful prospecting guides for porphyry copper deposits. Mineral Mag 41:288–292

    Article  Google Scholar 

  • Williams-Jones AE, Normand C (1997) Controls of mineral paragenesis in the system Fe–Sb–S–O. Econ Geol 92:308–324

    Article  Google Scholar 

  • Zack T, Kronz A, Foley SF, Rivers T (2002) Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chem Geol 184:97–122

    Article  Google Scholar 

Download references

Acknowledgments

Earlier versions of this manuscript benefited from thoughtful comments by J. Richards, J. Otamendi, and helpful discussions with C. Heinrich. We thank B. Townley and D. Cooke for critical reviews, and B. Lehmann for careful editorial handling. We also gratefully acknowledge the El Teniente Division of CODELCO for logistic support during this study. Special thanks to T.T. Win and W. Przybyłowicz for PIXE analyses and to V. Maksaev for kindly providing a ring dike sample for additional PIXE analyses. Chilean FONDECYT #198-0511 and FONDECYT Líneas Complementarias #800-0006 financed this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osvaldo M. Rabbia.

Additional information

Editorial handling: B. Lehmann

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Data Repository

(DOC 404 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabbia, O.M., Hernández, L.B., French, D.H. et al. The El Teniente porphyry Cu–Mo deposit from a hydrothermal rutile perspective. Miner Deposita 44, 849–866 (2009). https://doi.org/10.1007/s00126-009-0252-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-009-0252-4

Keywords

Navigation