Skip to main content
Log in

Timing and formation of porphyry Cu–Mo mineralization in the Chuquicamata district, northern Chile: new constraints from the Toki cluster

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The recently discovered Toki cluster, which includes the Toki, Quetena, Genoveva, Miranda, and Opache porphyry Cu–Mo prospects, is located 15 km south–southwest of the Chuquicamata–Radomiro Tomic mines in northern Chile. These prospects occur in an area of 5 × 6 km and are completely covered with Neogene alluvial deposits. Inferred resources for the cluster are estimated at about 20 Mt of fine copper, with Toki and Quetena contributing ∼88 % of these resources. Mineralization in these deposits is associated with tonalite porphyries that intruded andesites and dacites of the Collahuasi Group and intrusions of the Fortuna–Los Picos Granodioritic Complex. Hypogene mineralization in the Toki cluster consists mainly of chalcopyrite–bornite with minor molybdenite with mineralization grading outward to a chalcopyrite–pyrite zone and ultimately to a pyrite halo. Alteration is dominantly of the potassic type with K-feldspar and hydrothermal biotite. Sericitic alteration is relatively restricted to late quartz–pyrite veins (D-type veins). Previous K–Ar geochronology for the cluster yielded ages within a range of 34 to 40 Ma. Four new Re–Os ages for Toki indicate that molybdenite mineralization occurred in a single pulse at ∼38 Ma. Re–Os ages for three different molybdenite samples from Quetena are within error of the Toki mineralization ages. These ages are concordant with a new zircon U–Pb age of 38.6 ± 0.7 Ma from the tonalite porphyry in Quetena. Two Re–Os ages for Genoveva (38.1 ± 0.2 and 38.0 ± 0.2 Ma) are also within error of the Toki and Quetena molybdenite ages. Four Re–Os molybdenite ages for Opache range between 36.4 and 37.6 Ma. The Miranda prospect is the youngest with an age of ∼36 Ma. Four new Re–Os ages for the Chuquicamata deposit range between 33 and 32 Ma, whereas nine new 40Ar/39Ar ages of biotite, muscovite, and K-feldspar range between 32 and 31 Ma. Analyzed molybdenites have Re and Os concentrations that vary between 21–3,099 ppm and 8–1,231 ppb, respectively. The highest Re and Os concentrations are found in the Toki prospect. Three new 40Ar/39Ar ages for the Toki cluster are younger than the Re–Os mineralization ages. The age spectra for these three samples show evidence of excess argon and have similar inverse isochron ages of 35 Ma that probably reflect a late hydrothermal phyllic event. The new geochronological data presented here for the Toki cluster indicate that molybdenite mineralization occurred within a very short period, probably within 2 Ma, and synchronously (at ∼38 Ma) in three mineralization centers (Toki, Quetena, and Genoveva). Furthermore, mineralization at the Toki cluster preceded the emplacement of the Chuquicamata deposit (35–31 Ma) and indicates that porphyry Cu–Mo mineralization occurred episodically over a period of several million years in the Chuquicamata district.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ambrus J (1977) Geology of the El Abra porphyry copper deposit, Chile. Econ Geol 72:1062–1085

    Article  Google Scholar 

  • Ballard JR, Palin JM, Williams IS, Campbell IH, Faunes A (2001) Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP. Geology 29:383–386

    Article  Google Scholar 

  • Barra F, Ruiz J, Mathur R, Titley S (2003) A Re–Os study on sulfide minerals from the Bagdad porphyry Cu–Mo deposit, northern Arizona, USA. Miner Deposita 38:585–596

    Article  Google Scholar 

  • Barra F, Ruiz J, Valencia VA, Ochoa-Landin L, Chesley JT, Zurcher L (2005) Laramide porphyry Cu-Mo mineralization in northern Mexico: Age constraints from Re-Os geochronology in molybdenite. Econ Geol 100:1605–1616

    Article  Google Scholar 

  • Behn G, Camus F, Carrasco P, Ware H (2001) Aeromagnetic signature of porphyry copper systems in northern Chile and its geologic implications. Econ Geol 96:239–248

    Article  Google Scholar 

  • Berzina AN, Sotnikov VI, Economou-Eliopoulos M, Eliopoulos DG (2005) Distribution of rhenium in molybdenite from porphyry Cu–Mo and Mo–Cu deposits of Russia (Siberia) and Mongolia. Ore Geol Rev 26:91–113

    Article  Google Scholar 

  • Birck JL, RoyBarman M, Capmas F (1997) Re–Os measurements at the femtomole level in natural samples. Geost Newsletter 20:19–27

    Article  Google Scholar 

  • Boric R, Diaz F, Maksaev V (1990) Geología y yacimientos metalíferos de la Región de Antofagasta. Servicio Nacional de Geología y Minería, Boletín No. 40, 246 p, 2 maps

  • Boric R, Diaz J, Becerra H, Zentilli M (2009) Geology of the Ministro Hales Mine (MMH), Chuquicamata District, Chile. Actas XII Congreso Geológico Chileno, Santiago (electronic version)

  • Campbell IH, Ballard JR, Palin JM, Allen C, Faunes A (2006) U–Pb zircon geochronology of granitic rocks from the Chuquicamata-El Abra porphyry copper belt of Northern Chile: excimer laser ablation ICP-MS analysis. Econ Geol 101:1327–1344

    Article  Google Scholar 

  • Campos E, Wijbrans J, Andriessen PAM (2009) New thermochronologic constraints on the evolution of the Zaldivar porphyry copper deposits, Northern Chile. Miner Deposita 44:329–342

    Article  Google Scholar 

  • Camus F (2003) Geología de los sistemas porfíricos en los Andes de Chile. Servicio Nacional de Geología y Minería, Chile, p 267

    Google Scholar 

  • Camus F, Dilles JH (2001) A special issue devoted to porphyry copper deposits of northern Chile: preface. Econ Geol 96:233–237

    Article  Google Scholar 

  • Cannell J, Cooke DR, Walshe JL, Stein H (2005) Geology, mineralization, alteration and structural evolution of the El Teniente porphyry Cu–Mo deposit. Econ Geol 100:979–1003

    Article  Google Scholar 

  • Codelco Memoria Anual (2011) http://www.codelco.com/prontus_codelco/site/artic/20120411/asocfile/20120411124635/memoria_codelco_abr13_1.pdf

  • Creaser RA, Papanastassiou DA, Wasserburg GJ (1991) Negative thermal ion mass spectrometer of Os, Re and Ir. Geochim Cosmochim Acta 55:397–401

    Article  Google Scholar 

  • Cuadra P, Rojas G (2001) Oxide mineralization at the Radomiro Tomic porphyry copper deposit, Northern Chile. Econ Geol 96:387–400

    Article  Google Scholar 

  • Damon PE, Shafiqullah M, Clark KF (1983) Geochronology of the porphyry copper deposits and related mineralization of Mexico. Can J Earth Sci 20:1052–1071

    Article  Google Scholar 

  • Deckart K, Clark AH, Aguilar C, Vargas R, Bertens A, Mortensen JK, Fanning M (2005) Magmatic and hydrothermal chronology of the giant Río Blanco porphyry copper deposit, central Chile: implications of an integrated U–Pb and 40Ar/39Ar database. Econ Geol 100:905–934

    Article  Google Scholar 

  • Dilles JH, Tomlinson AJ, Martin MW, Blanco N (1997) El Abra and Fortuna complexes: a porphyry copper batholith sinistrally displaced by the Falla Oeste. Actas VIII Congreso Geológico Chileno, Antofagasta 3:1883–1887

    Google Scholar 

  • Gehrels GE, Valencia VA, Ruiz J (2008) Enhanced precision, accuracy, efficiency, and spatial resolution of U–Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry. Geochem Geophys Geosyst 9:Q03017. doi:10.1029/2007GC001805

    Article  Google Scholar 

  • Jensen PW (1998) A structural and geochemical study of the Sierrita porphyry copper system, Pima County, Arizona. MSc thesis, University of Arizona

  • Ludwig KR (2004) Users manual for Isoplot/Ex V. 3.20. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley, p 43

    Google Scholar 

  • Maksaev V, Munizaga F, McWilliams M, Fanning M, Mathur R, Ruiz J, Zentelli M (2004) New chronology for El Teniente, Chilean Andes, from U–Pb, 40Ar/39Ar, Re–Os, and fission track dating. In: Sillitoe RH, Perello J, Vidal CE (eds) Andean metallogeny: new discoveries, concepts and updates. Society of Economic Geologists, Boulder, pp 15–54, Special Publication 11

    Google Scholar 

  • Mao J, Zhang Z, Zuoheng Z, Du A (1999) Re–Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qilian mountains and its geological significance. Geochim Cosmochim Acta 63:1815–1818

    Article  Google Scholar 

  • Marinovich N, Lahsen A (1984) Hoja Calama, Región de Antofagasta, Carta Geológica de Chile. Servicio Nacional de Geología y Minería, Chile, p 140

    Google Scholar 

  • Marsh TM, Eunaudi MT, McWilliams M (1997) 40Ar/39Ar geochronology of Cu–Au and Au–Ag mineralization in the Potrerillos district, Chile. Econ Geol 92:784–806

    Article  Google Scholar 

  • Masterman GJ, Cooke DR, Berry RF, Clark AH, Archibald DA, Mathur R, Walshe JL, Duran M (2004) 40Ar/39Ar and Re–Os geochronology of porphyry copper–molybdenum deposits and related copper–silver veins in the Collahuasi district, Northern Chile. Econ Geol 99:673–690

    Article  Google Scholar 

  • Mathur R, Ruiz J, Munizaga F (2001) Insights into Andean metallogenesis form the perspective of Re–Os analyses of sulfides. III SSAGI International Conference volume 3, Pucón, Chile

  • May G, Hartley AJ, Chong G, Stuart F, Turner P, Kape SJ (2005) Eocene to Pleistocene lithoestratigraphy, chronostratigraphy and tectono-sedimentary evolution of the Calama Basin, northern Chile. Rev Geol Chile 32:33–58

    Article  Google Scholar 

  • Munizaga F, Maksaev V, Fanning CM, Giglio S, Yaxley G, Tassinari CCG (2008) Late Paleozoic–Early Triassic mamgmatism on the western margin of Gondwana: Collahuasi area, Northern Chile. Gond Res 13:407–427

    Article  Google Scholar 

  • Nägler TF, Frei R (1997) Plug in plug osmium distillation. Sch Mineral Petrogr Mitt 77:123–127

    Google Scholar 

  • Olson SF (1989) The stratigraphic and structural setting of the Potrerillos porphyry copper district, northern Chile. Rev Geol Chile 16:3–29

    Google Scholar 

  • Ossandón G, Freraut R, Gustafson LB, Lindsay DD, Zentilli M (2001) Geology of the Chuquicamata mine: a progress report. Econ Geol 96:249–270

    Article  Google Scholar 

  • Padilla-Garza RA, Titley SR, Pimentel F (2001) Geology of the Escondida porphyry copper deposit, Antofagasta region, Chile. Econ Geol 96:307–324

    Article  Google Scholar 

  • Padilla-Garza RA, Titley SR, Eastoe CJ (2004) Hypogene evolution of the Escondida porphyry copper deposit, Chile. In: Sillitoe RH, Perello J, Vidal CE (eds) Andean metallogeny: new discoveries, concepts and updates. Society of Economic Geologists, Boulder, pp 141–165, Special Publication 11

    Google Scholar 

  • Perelló J, Urzua F, Cabello J, Ortiz F (1996) Clustered, gold-bearing Oligocene porphyry copper and associated epithermal mineralization at La Fortuna, Vallenar Region, northern Chile. In: Camus F, Sillitoe RW, Petersen R (eds) Andean copper deposits: new discoveries, mineralization, styles, and metallogeny. Society of Economic Geologists, Boulder, pp 81–90, Special Publication 5

    Google Scholar 

  • Proffett JM, Dilles JH (2007) SHRIMP-RG ion microprobe U–Pb age determinations of intrusive rock units northeast of the Chuquicamata mine, Chile. Codelco internal report, p. 11.

  • Renne PR, Deino AL, Walter RC, Turrin BD, Swisher CC, Becker TA, Curtis GH, Sharp WD, Jaouni A (1994) Intercalibration of astronomical and radioisotopic time. Geology 22:783–786

    Article  Google Scholar 

  • Reynolds P, Ravenhurst C, Zentilli M, Lindsay D (1998) High-precision40Ar/39Ar dating of two consecutive hydrothermal events in the Chuquicamata porphyry copper system, Chile. Chem Geol 148:45–60

    Article  Google Scholar 

  • Richards JP, Noble SR, Pringle MS (1999) A revised late Eocene age for porphyry Cu magmatism in the Escondida area, northern Chile. Econ Geol 94:1231–1247

    Article  Google Scholar 

  • Richards JP, Boyce AJ, Pringle MS (2001) Geologic evolution of the Escondida area, northern Chile: a model for special and temporal localization of porphyry Cu mineralization. Econ Geol 96:271–305

    Article  Google Scholar 

  • Rivera SL, Pardo R (2004) Discovery and geology of the Toki porphyry copper deposit, Chuquicamata District, northern Chile. In: Sillitoe RH, Perello J, Vidal CE (eds) Andean metallogeny: new discoveries, concepts and updates. Society of Economic Geologists, Boulder, pp 15–54, Special Publication 11

    Google Scholar 

  • Rivera SL, Pardo R, Alcota H, Fontecilla C, Kovacic P, Pizarro J, Rojo J (2006) Reseña de la exploracion y geologia del cluster de porfidos de cobre Toki, distrito Chuquicamata. Actas XI Congreso Geológico Chileno, Antofagasta (electronic version)

  • Romero B, Kojima S, Wong C, Barra F, Véliz W, Ruiz J (2011) Molybdenite mineralization and Re–Os geochronology of the Escondida and Escondida Norte porphyry deposits, Northern Chile. Resour Geol 61:91–100

    Article  Google Scholar 

  • Selby D, Creaser RA (2001) Re–Os geochronology and systematics in molybdenite from the Endako porphyry molybdenum deposit, British Columbia, Canada. Econ Geol 96:197–204

    Article  Google Scholar 

  • Shirey S, Walker R (1995) Carius tube digestion for low-blank rhenium-osmium analysis. Anal Chem 67:2136–2141

    Article  Google Scholar 

  • Sillitoe RH (1988) Epochs of intrusion-related copper mineralization in the Andes. J S Am Earth Sci 1:89–108

    Article  Google Scholar 

  • Sillitoe RH (2004) Musings on future exploration targets and strategies in the Andes. In: Sillitoe RH, Perelló J, Vidal CE (eds) Andean metallogeny: new discoveries, concepts, and updates. Society of Economic Geologists, Boulder, pp 1–14, Special Publication 11

    Google Scholar 

  • Sillitoe RH, Perelló J (2005) Andean Copper Province: tectonomagmatic settings, deposit types, metallogeny, exploration, and discovery. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic Geology One Hundredth Anniversary Volume 1905–2005, Society of Economic Geologists Inc., pp. 845–890.

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Stein HJ, Markey RJ, Morgan JW, Hannah JL, Scherstén A (2001) The remarkable Re–Os chronometer in molybdenite: how and why it works. Terra Nova 13:479–486

    Article  Google Scholar 

  • Titley SR (1982) Geologic setting of porphyry copper deposits, southeastern Arizona. In: Titley SR (ed) Advances in the geology of the porphyry copper deposits in the southwestern North America. University of Arizona Press, Tucson, Arizona, pp 37–58

    Google Scholar 

  • Tomlinson AJ, Blanco N, Maksaev V, Dilles JH, Grunder A, Ladino M (2001) Geología de la Precordillera Andina de Quebrada Blanca-Chuquicamata, Regiones I y II (20°30′–22°30′S). Servicio Nacional de Geología y Minería (SERNAGEOMIN), Santiago, Chile, Informe Registrado IR-01-20, 20 mapas escala 1:50.000, 444 pp.

  • Tomlinson AJ, Blanco N (2008) Geología de la franja El Abra-Chuquicamata, II Región (21°45′–22°30′S). Servicio Nacional de Geología y Minería (SERNAGEOMIN), Santiago, Chile, Informe Registrado IR-08-35, 5 mapas escala 1:50.000.

  • Völkening J, Walczyk T, Heumann KG (1991) Osmium isotope ratio determinations by negative thermal ionization mass spectrometry. Inter J Mass Spectr Ion Proc 105:147–159

    Article  Google Scholar 

Download references

Acknowledgments

This contribution is the result of a collaborative study between industry and academia. We thank Exploraciones Mineras Andinas S.A. and the Gerencia Corporativa de Exploraciones of Codelco-Chile for funding this research and permission to publish. We also thank Roberto Freraut and the Subgerencia de Geología y Geotecnia, División Codelco Norte for permission to publish data from the Chuquicamata deposit. We gratefully acknowledge John Dilles, Andrew Tomlinson, and José Perelló for their critical and constructive comments which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Barra.

Additional information

Editorial handling: J. Perello

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barra, F., Alcota, H., Rivera, S. et al. Timing and formation of porphyry Cu–Mo mineralization in the Chuquicamata district, northern Chile: new constraints from the Toki cluster. Miner Deposita 48, 629–651 (2013). https://doi.org/10.1007/s00126-012-0452-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-012-0452-1

Keywords

Navigation