Skip to main content

Advertisement

Log in

New thermochronologic constraints on the evolution of the Zaldívar porphyry copper deposit, Northern Chile

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Life spans and thermal evolution of hydrothermal systems are of fundamental metallogenic importance. We were able to establish the chronology and cooling history of the Zaldívar porphyry copper deposit (Northern Chile) by applying a combination of different isotopic dating methods in minerals with different closure temperatures, including 40Ar/39Ar geochronology and zircon fission track thermochronology, together with fluid inclusion thermometry and previous published U–Pb zircon geochronology. The hydrothermal mineralization in the Zaldívar deposit is genetically related to the Llamo Porphyry unit. Samples of igneous biotites from this intrusion yielded 40Ar/39Ar plateau ages between 35.5 ± 0.7 and 37.7 ± 0.4 Ma defining a weighted average of 36.6 ± 0.5 Ma (2σ). In contrast, one sample from the Zaldívar porphyry, one from the andesites, and two from the Llamo porphyry yielded considerably younger fission track ages of approximately 29 Ma with a weighted mean for all ages of 29.1 ± 1.7 Ma (2σ). Thermal and compositional constraints for the hydrothermal system in the Zaldívar deposit from fluid inclusions thermometry show that at least three fluid types broadly characterize two main hydrothermal episodes during the evolution of the deposit. The main mineralization and alteration event is characterized by high temperature (above 320°C) hypersaline fluids (salinity between 30 and 56 wt.% NaCl equivalents) coexisting with low-density gas-rich inclusions (salinity less than 17 wt.% NaCl equivalents) that homogenizing into the gas phase at temperatures above 350°C. The second episode corresponds to a low-temperature event which is characterized by liquid-rich fluid inclusions that homogenize into the liquid phase at temperatures ranging from 200°C to 300°C with salinities lower than 10 wt.% NaCl equivalents. The 40Ar/39Ar data (36.6 ± 0.5 Ma, weighted average) obtained from igneous biotites represent the minimum age for the last high-temperature (above 300°C) hydrothermal pulse. When compared with previously published U–Pb ages (38.7 ± 1.3 Ma) in zircons from the Llamo porphyry, a close temporal relationship between crystallization of the parental intrusion and the thermal collapse of the last high-temperature hydrothermal event is evident. Cooling took place from approximately 800°C (crystallization of the intrusive complex defined by zircon U–Pb ages) to below 300 ± 50°C (biotite 40Ar/39Ar closure temperature) within approximately 1.5 m.y. Because the thermal annealing of fission tracks in zircons occurs at temperatures of 240 ± 30°, the zircon fission track (ZFT) ages of 29.1 ± 1.7 Ma (2σ) mark the end of the thermal activity in the Zaldívar area, specifically the time when the whole area cooled below this temperature, well after the collapse of the main hydrothermal event in the Zaldívar porphyry copper deposit. This cooling age roughly coincides with the age defined for the emplacement of dacitic dikes at 31 ± 2.8 Ma (2σ) (published K–Ar whole rock), 5 km south of the Zaldívar deposit, in the Escondida area. This late magmatic pulse probably is responsible for high heat flow in the Zaldívar deposit as late as 29 Ma. There is no evidence that the low temperature hydrothermal pulse recognized by fluid inclusion studies is related to this thermal event. The zircon fission track cooling ages are interpreted to be related to the time lag required for complete relaxation of the perturbation of the isotherms in the geothermal field imposed by the intrusion of magmatic bodies, with or without any association with low temperature hydrothermal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alpers HC, Brimhall GH (1988) Middle Miocene climatic change in the Atacama Desert, northern Chile: evidences from supergene mineralization at La Escondida. Geol Soc Amer Bull 100:1640–1656

    Article  Google Scholar 

  • Atkinson AB (2002) A model for the PTX properties of H2O-NaCl. Ph.D. thesis, Virginia Polytechnic Institute and State University

  • Brandon MT, Roden-Tice MK, Garver JI (1998) Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic mountains, northwest Washington State. Geol Soc Amer Bull 110:985–1009

    Article  Google Scholar 

  • Bernet M, Brandon MT, Garver JI, Reiners PW, Fitzgerald PG (2002) Determining the zircon fission-track closure temperature. Geol Soc Amer 34:18

    Google Scholar 

  • Boric R, Diaz F, Maksaev V (1990) Geología y yacimientos metalíferos de la Región de Antofagasta. Boletín No 40, Servicio Nacional de Geología y Minería

  • Burnham CW (1979) Magmas and hydrothermal fluids. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. 2nd edn. Wiley, New York, pp 71–136

    Google Scholar 

  • Campos E, Touret JLR, Nikogosian I, Delgado J (2002) Overheated, Cu-bearing magmas in the Zaldívar porphyry-Cu deposit, Northern Chile. Geodynamic consequences. Tectonophysics 345:229–251

    Article  Google Scholar 

  • Camus F (2003) Geología de los sistemas porfídicos en los Andes de Chile. Servicio Nacional de Geología y Minería, Santiago, Chile 267 p

    Google Scholar 

  • Clark AH, Archibald DA, Lee AW, Farrar E, Hodgson CJ (1998) Laser probe 40Ar/39Ar ages of early- and late-stage alteration assemblage, Rosario porphyry copper–molybdenum deposit, Collahuasi District, I Region, Chile. Econ Geol 93:326–337

    Google Scholar 

  • Candela PA, Piccoli PM (2005) Magmatic processes in the development of porphyry-type ore systems. Econ Geol One Hundred Anniversary Volume, pp 25–38

  • Cline JS (1995) Genesis of porphyry copper deposits: the behavior of water, chloride, and copper in crystallizing melts. Ariz Geol Soc Dig 20:69–82

    Google Scholar 

  • Cline JS (2003) How to concentrate copper. Science 302:2075–2076

    Article  Google Scholar 

  • Cooke DR, Hollings P, Walshe JL (2005) Giant porphyry deposit: characteristics, distribution, and tectonic controls. Econ Geol 100:801–818

    Article  Google Scholar 

  • De Bruijne CH (2001) Denudation, intraplate tectonics and far field effects; and integrated apatite fission track study in central Spain: Ph.D. thesis, Vrije Universiteit Amsterdam, p 164

  • Deckart K, Clark AH, Aguilar AC, Vargas RR, Bertens NA, Mortensen JK, Fanning M (2005) Magmatic and hydrothermal chronology of the giant Río Blanco porphyry copper deposit, central Chile, implications of an integrated U–Pb and 40Ar/39Ar database. Econ Geol 100:905–934

    Article  Google Scholar 

  • Einaudi MT (1998) Porphyry copper and epithermal systems. Short course. Instituto de Geología Económica Aplicada, Universidad de Concepcion, Chile

    Google Scholar 

  • Fleischer RL, Price PB (1964) Techniques for geological dating of minerals by chemical etching of fission fragments tracks. Geochim Cosmochim Acta 28:1705–1714

    Article  Google Scholar 

  • Fleischer RL, Price PB, Walker RM (1965) Effects of temperature, pressure and ionization on the formation and stability of fission tracks in minerals and glasses. J Geophys Res 70:1497–1502

    Article  Google Scholar 

  • Fournier R (1999) Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic–epithermal environment. Econ Geol 94:1193–1212

    Google Scholar 

  • Galbraith RF (1990) The radial plot: graphical assessment of spread in ages. Nucl Tracks Radiat Meas 17:207–214

    Article  Google Scholar 

  • Green PF, Duddy IR, Gleadow AWJ, Tingate PR, Laslett GM (1986) Thermal annealing of fission tracks in apatite, 1: a qualitative description. Chem Geol 59:237–253

    Article  Google Scholar 

  • Gow PA, Walsh JL (2005) The role of preexisting geologic architecture in the formation of giant porphyry-related Cu ± Au deposit: examples from new Guinea and Chile. Econ Geol 100:819–834

    Article  Google Scholar 

  • Harris AC, Kamenetsky V, White NC, van Achterbergh E, Ryan CG (2003) Melt inclusions in veins: linking magma and porphyry Cu deposits. Science 302:2109–2111

    Article  Google Scholar 

  • Harris AC, Golding SD, White NC (2005) The genesis of Bajo de la Alumbrera deposit: stable isotope evidence for a porphyry-related hydrothermal system dominated by magmatic aqueous fluids. Econ Geol 101:71–94

    Article  Google Scholar 

  • Harris AC, Dunlap WJ, Reiners PW, Allen CM, Cooke DR, White NC, Campbell IH, Golding SD (2007) Multimillion year history of a porphyry copper deposit: application of U–Pb, 40Ar/39Ar and (U–Th)/He chronometers, Bajo de la Alumbrera copper-gold deposit, Argentina. Miner Depos 43:295–314

    Article  Google Scholar 

  • Harrison TM, Duncan I, McDougall I (1985) Diffusion of 40Ar in biotite: temperature, pressure and compositional effects. Geochim Cosmochim Acta 49:2461–2468

    Article  Google Scholar 

  • Henley RW, McNabb A (1978) Magmatic vapor plumes and ground-water interaction in porphyry copper emplacement. Econ Geol 59:538–569

    Google Scholar 

  • Hurford AJ (1986) Cooling and uplift pattern in the Lepontine Alps, South Central Switzerland and an age of vertical movement on the Insubric fault line. Contrib Mineral Petrol 92:413–427

    Article  Google Scholar 

  • Maksaev V, Munizaga F, Mc Williams M, Fanning M, Marthur R, Ruiz J, Zentilli M (2004) New chronology for El Teniente, Chilean Andes, from U–Pb, 40Ar/39Ar, Re–Os, and fission track dating implications for the evolution of a supergiant porphyry Cu–Mo deposit, Chile. Econ Geol Spec Publ 11:15–54

    Google Scholar 

  • Marinovic N, Smoje I, Maksaev V, Herve M, Mpodozis C (1995) Hoja Aguas Blancas, Región de Antofagasta: Servicio Nacional de Geología y Minería. Carta Geol Chile 70:150

    Google Scholar 

  • Maturana M, Zaric N (1991) Geología y mineralización del yacimiento tipo pórfido cuprífero Zaldívar, en los Andes del Norte de Chile. Rev Geol Chile 18:109–120

    Google Scholar 

  • Moore WJ, Nash JT (1974) Alteration and fluid inclusion studies of the porphyry copper ore body at Bingham, Utah. Econ Geol 69:631–645

    Article  Google Scholar 

  • Ojeda JM (1986) Escondida porphyry copper deposit, II region, Chile: exploration drilling and current geological interpretation. Institution of Mining and Metallurgy (London) Mining Latin America Conference, Santiago, 17–19 November 1986, Papers, p 199–318

  • Padilla-Garza R, Titley SR, Eastoe CJ (2004) Hypogene evolution of the Escondida porphyry copper deposit, Chile. Society of Economic Geologist Special Publication 11, pp 141–165

  • Pichavant M, Ramboz C, Weisbrod A (1982) Fluid immiscibility in natural processes: use and misuse of fluid inclusion data. I. Phase equilibria analysis—a theoretical and geometrical approach. Chem Geol 37:1–27

    Article  Google Scholar 

  • Proffett JM (2003) Geology of the Bajo de la Alumbrera porphyry copper–gold deposit, Argentina. Econ Geol 98:1535–1574

    Article  Google Scholar 

  • Richards JP, Noble SR, Pringle M (1999) A revised late Eocene age for porphyry copper magmatism in the Escondida Area, Northern Chile. Econ Geol 94:1231–1248

    Google Scholar 

  • Richards JP (2003) Tectono-magmatic precursors for porphyry Cu–(Mo–Au) deposit formation. Econ Geol 98:1515–1534

    Article  Google Scholar 

  • Reynolds P, Ravenhurst C, Zentilli M, Linsay D (1997) High precision 40Ar/39Ar dating of two consecutive hydrothermal events in the Chuquicamata porphyry copper system, Chile. Geological Association of Canada–Mineralogical Association of Canada, Program with abstracts 22, pp A-125

  • Roedder E (1984) Fluid inclusions. Rev Miner 12:1–644

    Google Scholar 

  • Seedorff E, Dilles JH, Proffett JM, Einaudi MT, Zucher L, Stavast WJA, Johnson DA, Barton MD (2005) Porphyry deposits: characteristics and origin of hypogene features. Econ Geol One Hundred Anniversary Volume, pp 251–298

  • Shepherd T, Rankin AH, Alderton DHM (1985) A practical guide to fluid inclusion studies. Blakie, Glasgow, p 240

    Google Scholar 

  • Tagami T, Carter A, Hurford AJ (1996) Natural long-term annealing of zircon fission-track system in the Vienna Basin deep borehole samples: constrains upon partial annealing zone and closure temperature. Chem Geol 130:147–157

    Article  Google Scholar 

  • Tagami T (2005) Zircon fission-track thermochronology and applications to fault studies. Rev Mineral Geochem 58:95–122

    Article  Google Scholar 

  • Titley SR, Beane RE (1981) Porphyry copper deposits. Part I: geologic settings, petrology, and tectonogenesis. Econ Geol 75th Anniversary, pp 214–249

  • Wijbrans JR, Pringle MS, Koppers AAP, Scheveers R (1995) Argon geochronology of small samples using the Vulkaan argon laserprobe. Proc Kon Ned Akad v Wetensch 98:185–218

    Google Scholar 

  • William-Jones AE, Heinrich CA (2005) Vapor transport of meals and the formation of magmatic–hydrothermal ore deposits. Econ Geol 100:1285–1312

    Google Scholar 

  • Zentilli M, Krogh T, Maksaev V, Alpers C (1994) Uranium–lead dating of zircons from Chuquicamata and La Escondida porphyry copper deposit, Chile: inherited zircon cores of Paleozoic age with Terciary overgrowths. Comunicaciones (Universidad de Chile) 45:101–110

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Compañía Minera Zaldívar for providing field support and access to the mine and to unpublished reports; special thanks are owed to Jaime Delgado and Patricio Morales. Facilities for all analytical work were provided by the Vrije Universiteit Amsterdam, The Netherlands. Comprehensive and thoughtful reviews by T. Bissig, A. Harris, and V. Maksaev on the original manuscript provided numerous suggestions that significantly improve the content and clarity of this paper; we want to express our thanks for their interest. We also acknowledge the excellent editorial comments from Patrick Williams and Lawrence Meinert. Finally thanks also to L. Kerstein and F. Barra for the comments aimed at enhancing readability of the final text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Campos.

Additional information

Editorial handling: P. Williams

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campos, E., Wijbrans, J. & Andriessen, P.A.M. New thermochronologic constraints on the evolution of the Zaldívar porphyry copper deposit, Northern Chile. Miner Deposita 44, 329–342 (2009). https://doi.org/10.1007/s00126-008-0226-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-008-0226-y

Keywords

Navigation