Skip to main content
Log in

“Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Over 5300 recent SHRIMP-RG analyses of trace elements (TE) in igneous zircon have been compiled and classified based on their original tectono-magmatic setting to empirically evaluate “geochemical fingerprints” unique to those settings. Immobile element geochemical fingerprints used for lavas are applied with the same rational to zircon, including consideration of mineral competition on zircon TE ratios, and new criteria for distinguishing mid-ocean ridge (MOR), magmatic arc, and ocean island (and other plume-influenced) settings are proposed. The elemental ratios in zircon effective for fingerprinting tectono-magmatic provenance are systematically related to lava composition from equivalent settings. Existing discrimination diagrams using zircon U/Yb versus Hf or Y do not distinguish TE-enriched ocean island settings (i.e., Iceland, Hawaii) from magmatic arc settings. However, bivariate diagrams with combined cation ratios involving U–Nb–Sc–Yb–Gd–Ce provide a more complete distinction of zircon from these settings. On diagrams of U/Yb versus Nb/Yb, most MOR, ocean island, and kimberlite zircon define a broad “mantle-zircon array”; arc zircon defines a parallel array offset to higher U/Yb. Distinctly low U/Yb ratios of MOR zircon (typically <0.1) mirror their parental magmas and long-term incompatible element depletion of the MORB mantle. Plume-influenced sources are distinguished from MOR by higher U/Yb, U/Nb, Nb/Yb, and Nb/Sc. For zircon with U/Yb > 0.1, high Sc/Yb separates arc settings from low-Sc/Yb plume-influenced sources. The slope of scandium enrichment trends in zircon differ between MOR and continental arc settings, likely reflecting the involvement of amphibole during melt differentiation. Scandium is thus also critical for discriminating provenance, but its behavior in zircon probably reflects contrasting melt fractionation trends between tholeiitic and calc-alkaline systems more than compositional differences in primitive magmas sourced at each tectono-magmatic source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abd El-Naby HH, Dawood YH (2014) Testing the validity of detrital zircon chemistry as a provenance indicator. Arab J Geosci 7:341–353. doi:10.1007/s12517-012-0800-6

    Article  Google Scholar 

  • Barker SJ, Wilson CJN, Smith EGC, Charlier BLA, Wooden JL, Hiess J, Ireland TR (2014) Post-supereruption magmatic reconstruction of taupovolcano (New Zealand), as reflected in zircon ages and trace elements. J Petrol 55(1511):1533. doi:10.1093/petrology/egu032

    Google Scholar 

  • Barth AP, Wooden JL (2010) Coupled elemental and isotopic analyses of polygenetic zircons from granitic rocks by ion microprobe, with implications for melt evolution and the sources of granitic magmas. Chem Geol 277:149–159

    Article  Google Scholar 

  • Barth AP, Wooden JL, Jacobson CE, Economos RC (2013) Detrital zircon as a proxy for tracking magmatic arc systems: the California arc example. Geology 41:223–226. doi:10.1130/G33619.1

    Article  Google Scholar 

  • Bea F (1996) Residence of REE, Y, Th, and U in granites and crustal protoliths; implications for the chemistry of crustal melts. J Petrol 37:521–552

    Article  Google Scholar 

  • Belousova EA, Griffin WL, Pearson NJ (1998) Trace element composition and cathodoluminescence properties of southern African kimberlitic zircons. Mineral Mag 62:355–366

    Article  Google Scholar 

  • Belousova EA, Griffin WL, O’Reilly SY, Fisher NJ (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Miner Petrol 143:602–622. doi:10.1007/s00410-002-0364-7

    Article  Google Scholar 

  • Belousova EA, Jiménez JMG, Graham I, Griffin WL, O’Reilly SY, Pearson N, Martin L, Craven S, Talavera C (2015) The enigma of crustal zircons in upper-mantle rocks: clues from the Tumut ophiolite, southeast Australia. Geology 43:119–222. doi:10.1130/G36231.1

    Article  Google Scholar 

  • Breiter K, Lamarão CN, Borges RMK, Dall’Agnol R (2014) Chemical characteristics of zircon from A-type granites and comparison to zircon of S-type granites. Lithos 192–195:208–225. doi:10.1016/j.lithos.2014.02.004

    Article  Google Scholar 

  • Brophy JG (2008) A study of rare earth element (REE)–SiO2 variations in felsic liquids generated by basalt fractionation and amphibole melting: a potential test for discriminating between the two different processes. Contrib Miner Petrol 156:337–357

    Article  Google Scholar 

  • Brown EH (1977) Ophiolite on Fidalgo Island, Washington, In: Coleman RG, Irwin WP (eds) North American ophiolites: Oregon Department of Geology and Mineral Industries. Bulletin 95:67–93

  • Burmester RF, Blake MC Jr, Engebretson DC (2000) Remagnetization during Cretaceous Normal Superchron in Eastern San Juan Islands, WA: implications for tectonic history. Tectonophysics 326:73–92. doi:10.1016/S0040-1951(00)00147-5

    Article  Google Scholar 

  • Carley TL, Miller CF, Wooden JL, Bindeman IN, Barth AP (2011) Zircon from historic eruptions in Iceland: reconstructing storage and evolution of silicic magmas. Mineral Petrol 102:135–161. doi:10.1007/s00710-011-0169-3

    Article  Google Scholar 

  • Carley TL, Miller CF, Wooden JL, Padilla AJ, Schmitt AK, Economos RC, Bindeman IN, Jordan BT (2014) Iceland is not a magmatic analog for the Hadean: evidence from the zircon record. Earth Planet Sci Lett 405:85–97. doi:10.1016/j.epsl.2014.08.015

    Article  Google Scholar 

  • Cavosie AJ, Valley JW, Wilde SA (2005) Magmatic δ18O in 4400–3900 Ma detrital zircons: a record of the alteration and recycling of crust in the Early Archean. Earth Planet Sci Lett 235:663–681

    Article  Google Scholar 

  • Cavosie AJ, Valley JW, Wilde SA (2006) Correlated microanalysis of zircon: δ18O and U–Th–Pb isotopic constraints on the igneous origin of complex >3900 Ma detrital grains. Geochim Cosmochim Acta 70:5601–5616. doi:10.1016/j.gca.2006.08.011

    Article  Google Scholar 

  • Chamberlain KJ, Wilson CJN, Wooden JL, Cherlier BLA, Ireland TR (2014) New perspectives on the Bishop Tuff from zircon textures, ages and trace elements. J Petrol 55:395–426. doi:10.1093/petrology/egt072

    Article  Google Scholar 

  • Claiborne LL, Miller CF, Walker BA, Wooden JL, Mazdab FK, Bea F (2006) Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: an example from the Spirit Mountain batholith, Nevada. Mineral Mag 70:517–543

    Article  Google Scholar 

  • Claiborne LL, Miller CF, Wooden JL, Mazdab FK (2010) Trace element composition of igneous zircon: temporal, thermal, and compositional record of magmatic processes in the Spirit Mountain Batholith, Nevada. Contrib Miner Petrol 160:511–531. doi:10.1007/s00410-010-0491-5

    Article  Google Scholar 

  • Colombini LL, Miller CF, Gualda GAR, Wooden JL, Miller JS (2010) Sphene and zircon in the highland range volcanic sequence (Miocene, southern Nevada, USA): elemental partitioning, phase relations, and influence on evolution of silicic magma. Mineral Petrol 102:29–50

    Article  Google Scholar 

  • Compston W, Pidgeon RT (1986) Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature 321:766–769. doi:10.1038/321766a0

    Article  Google Scholar 

  • Coogan LA, Hinton RW (2006) Do the trace element compositions of detrital zircons require Hadean continental crust? Geology 34:633–636. doi:10.1130/G22737.1

    Article  Google Scholar 

  • Crowley JL, Myers JS, Sylvester PJ, Cox RA (2005) Detrital zircon from the Jack Hills and Mount Narryer, Western Australia; Evidence for diverse >4.0 Ga source rocks. J Geol 113:239–263. doi:10.1086/428804

    Article  Google Scholar 

  • Dickinson WH (2008) Impact of differential zircon fertility of granitoid basement rocks in North America on age populations of detrital zircons and implications for granite petrogenesis. Earth Planet Sci Lett 275:80–92

    Article  Google Scholar 

  • Dickinson WR, Gehrels GE (2009) Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth Planet Sci Lett 288:115–125. doi:10.1016/j.epsl.2009.09.013

    Article  Google Scholar 

  • Dilek Y, Furnes H (2011) Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol Soc Am Bull 123:387–411

    Article  Google Scholar 

  • Dosso L, Hanan BB, Bougault H, Schilling JG, Joron JL (1991) Sr–Nd–Pb geochemical morphology between 10 degrees N and 17 degrees N on the Mid-Atlantic Ridge- a new MORB isotope signature. Earth Planet Sci Lett 106:29–43

    Article  Google Scholar 

  • Dosso L, Bougault H, Joron JL (1993) Geochemical morphology of the North Mid-Atlantic Ridge, 10°–24°N: trace element-isotope complementarity. Earth Planet Sci Lett 120:443–462

    Article  Google Scholar 

  • Feilen ADG, Barth AP, Wooden JL, Pignotta G (2010) Pluton-volcanic connection in the Sierra Nevada evaluated from zircon trace element data. Geol Soc Am Abstr Progr 42(5):626

    Google Scholar 

  • Finch RJ, Hanchar JM, Hoskin PWO, Burns PC (2001) Rare earth elements in synthetic zircon: part 2. A single-crystal X-ray study of xenotime substitution. Am Mineral 86:681–689

    Article  Google Scholar 

  • Flanagan DM (2009) Zircon from Swift Creek stage eruptions records the assembly and evolution of an intrusive magmatic complex beneath Mount St. Helens. Master’s Thesis, Vanderbilt University, p 84

  • Fohey-Breting NK, Barth AP, Wooden JL, Mazdab FK, Carter CA, Schermer ER (2010) Relationship of voluminous ignimbrites to continental arc plutons: petrology of Jurassic ignimbrites and contemporaneous plutons in southern California. J Volcanol Geoth Res 189:1–11. doi:10.1016/j.volgeores.2009.07.010

    Article  Google Scholar 

  • France L, Ildefonse B, Koepke J (2013) Hydrous magmatism triggered by assimilation of hydrothermally altered rocks in fossil oceanic crust (northern Oman ophiolite). Geochem Geophys Geosyst. doi:10.1002/ggge.20137

    Google Scholar 

  • Froude DO, Ireland TR, Kinny PD, Williams IS, Compston W, Williams IR, Myers JS (1983) Ion microprobe identification of 4100–4200 Myr-old terrestrial zircons. Nature 304:616–618. doi:10.1038/304616a0

    Article  Google Scholar 

  • Gehrels GE, Blakey R, Karlstrom KE, Timmons JM, Dickinson B, Pecha M (2011) Detrital zircon U-Pb geochronology of Paleozoic strata in the Grand Canyon, Arizona. Lithosphere 3:183–200. doi:10.1130/L121.1

    Article  Google Scholar 

  • Grimes CB, John BE, Kelemen PB, Mazdab F, Wooden JL, Cheadle MJ, Hanghøj K, Schwartz JJ (2007) The trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology 35:643–646. doi:10.1130/G23603A.1

    Article  Google Scholar 

  • Grimes CB, John BE, Cheadle MJ, Mazdab FK, Wooden JL, Swapp S, Schwartz JJ (2009) On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contrib Miner Petrol 158:757–783

    Article  Google Scholar 

  • Grimes CB, Ushikubo T, Kozdon R, Valley JW (2013) Perspectives on the origin of plagiogranite in ophiolites from oxygen isotopes in zircon. Lithos 179:48–66. doi:10.1016/j.lithos.2013.07.026

    Article  Google Scholar 

  • Hanchar JM, van Westrenan W (2007) Rare earth element-behaviour in zircon-melt systems. Elements 3:37–42

    Article  Google Scholar 

  • Hansen LN, Cheadle MJ, John BE, Tucholke BE, Tivey MA, Dick HJ, Swapp S (2013) Styles of detachment faulting at the kane oceanic core complex, 23°N Mid-Atlantic Ridge. Geochem Geophys Geosyst. doi:10.1002/ggge.20184

    Google Scholar 

  • Hawkesworth CJ, Kemp AIS (2006) Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem Geol 226:144–162. doi:10.1016/j.chemgeo.2005.09.018

    Article  Google Scholar 

  • Heaman LM, Bowins R, Crocket J (1990) The chemical composition of igneous zircon suites: implications for geochemical tracer studies. Geochim Cosmochim Acta 54:1597–1607

    Article  Google Scholar 

  • Hoskin PWO (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim Cosmochim Acta 69:637–648

    Article  Google Scholar 

  • Hoskin PWO, Ireland TR (2000) Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 28:627–630

    Article  Google Scholar 

  • Hoskin PO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar JM, Hoskin PWO (eds), Zircon, Reviews in Mineralogy and Geochemistry 53. Mineralogical Society of America, pp 27–62

  • Kelemen PB, Hanghoj K, Greene AR (2003) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Rudnick RL (ed) The crust: Holland HD, Turekian KK (eds) Treatise on Geochemistry, v. 3, Elsevier-Pergamon, Oxford, pp 593–659

  • Kirkland CL, Smithies RH, Taylor RJM, Evans N, McDonald B (2015) Zircon Th/U ratios in magmatic environs. Lithos 212–215:397–414

    Article  Google Scholar 

  • Kitajima K, Ushikubo T, Kita NY, Maruyama S, Valley JW (2012) Relative retention of trace element and oxygen isotope ratios in zircon from Archean rhyolite, Panorama Formation, North Pole Dome, Pilbara Craton, Western Australia. Chem Geol 332–333:102–115. doi:10.1016/j.epsl.2012.11.012

    Article  Google Scholar 

  • Klein EM (2003) Geochemistry of the igneous oceanic crust. In: Rudnick RL (ed) The crust, v. 3. In: Rudnick RL (ed), The crust: Holland HD, Turekian KK (eds) Treatise on geochemistry, v. 3, Elsevier-Pergamon, Oxford, pp 433–464

  • Koepke J, Berndt J, Feig ST, Holtz F (2007) The formation of SiO2-rich melts within deep oceanic crust by hydrous partial melting of gabbros. Contrib Miner Petrol 153:67–84

    Article  Google Scholar 

  • Köksal S, Goncuoglu MC, Toksoy-Koksal F (2010) Re-evaluation of the petrological features of the Ekecikdag oceanic plagiogranites in Central Anatolia/Turkey. METU convention, Oct. 8, 2010, Paper No. 46(9)

  • Kurth M, Sassen A, Suhr G, Mezger K (1998) Precise ages and isotopic constraints for the Lewis Hills (Bay of Islands Ophiolite): preservation of an arc–spreading ridge intersection. Geology 26:1127–1130

    Article  Google Scholar 

  • Lehnert K, Su Y, Langmuir C, Sarbas B, Nohl U (2000) A global geochemical database structure for rocks. Geochem Geophys Geosyst 1. doi:10.1029/1999GC000026

  • Lowenstern JB, Clynne MA, Bullen TD (1997) Comagmatic A-type granophyre and rhyolite from the Alid volcanic center, Eritrea, northeast Africa. J Petrol 38:1707–1721

    Article  Google Scholar 

  • Lowenstern JB, Charlier BLA, Clynne MA, Wooden JL (2006) Extreme U-Th disequilibrium in rift-related basalts, rhyolites and granophyric granite and the timescale of rhyolite generation, intrusion and crystallization at Alid volcanic center, Eritrea. J Petrol 47:2105–2122

    Article  Google Scholar 

  • Luo Y, Ayers JC (2009) Experimental measurements of zircon/melt trace-element partition coefficients. Geochim Cosmochim Acta 73:3656–3679

    Article  Google Scholar 

  • Maas R, Kinny PD, Williams IS, Froude DO, Compston W (1992) The Earth’s oldest known crust: a geochronological and geochemical study of 3900–4200 Ma detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochimica et Cosmochimica Acta 56:1281–1300. doi:10.1016/0016-7037(92)90062-N

    Article  Google Scholar 

  • Mahood G, Hildreth W (1983) Large partition coefficients for trace elements in high-silica rhyolites. Geochim Cosmochim Acta 47:11–30

    Article  Google Scholar 

  • McDonough WF, Sun S (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • McDowell SM, Miller CF, Mundil R, Ferguson CA, Wooden JL (2014) Zircon evidence for a ~ 200 k.y. supereruption-related thermal flare-up in the Miocene southern Black Mountains, western Arizona, USA. Contrib Miner Petrol 168:1031. doi:10.1007/s00410-014-1031-5

    Article  Google Scholar 

  • Miller CF, Claiborne LL, Gualda GAR, Padilla AD, Thomas D, Carley TL, Covey AK (2015) Improved partition coefficients for zircon/melt from in situ analysis of glass and crystal rims: coherent behavior, strong temperature dependence. Geol Soc Am Abstracts with Programs. 47(7):278

  • Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4300 Myr ago. Nature 409(6817):178–181

    Article  Google Scholar 

  • Nardi LVS, Formoso MLL, Müller IF, Fontana E, Jarvis K, Lamarão C (2013) Zircon/rock partition coefficients of REEs, Y, Th, U, Nb, and Ta in granitic rocks: uses for provenance and mineral exploration purposes. Chem Geol 335:1–7. doi:10.1016/j.chemgeo.2012.10.043

    Article  Google Scholar 

  • Nebel O, Rapp RP, Yaxley GM (2014) The role of detrital zircons in Hadean crustal research. Lithos 190–191:313–327. doi:10.1016/j.lithos.2013.12.010

    Article  Google Scholar 

  • Nutman AP, Heiss J (2009) A granitic inclusion suite within igneous zircons from a 3.81 Ga tonalite (W. Greenland): restrictions for Hadean crustal studies using detrital zircons. Chem Geol 261:77–82. doi:10.1016/j.chem.geo.2008.09.005

    Article  Google Scholar 

  • Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48. doi:10.1016/j.lithos.2007.06.016

    Article  Google Scholar 

  • Pearce JA, RJ Stern (2006) Origin of back-arc basin magmas: Trace element and isotope perspectives. In: Christie DM et al (eds) Back-Arc spreading systems: geological, biological, chemical and physical interactions, geophys. Monogr Ser 166:63–86, AGU, Washington, DC. doi:10.1029/166GM06

  • Pearce JA, Lippard SJ, Roberts S (1984a) Characteristics and tectonic significance of supra-subduction zone ophiolites. Geol Soc Lond Spec Publ 16:77–94

    Article  Google Scholar 

  • Pearce JA, Harris NB, Tindle AG (1984b) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983. doi:10.1093/petrology/25.4.95

    Article  Google Scholar 

  • Portner RA, Daczko NR, Murphy MJ, Pearson NJ (2011) Enriching mantle melts within a dying mid-ocean spreading ridge: insights from Hf-isotope and trace element patterns in detrital oceanic zircon. Lithos 126:355–368. doi:10.1016/j.lithos.2011.07.017

    Article  Google Scholar 

  • Prowatke S, Klemme S (2005) Effect of melt composition on the partitioning of trace elements between titanite and silicate melt. Geochim Cosmochim Acta 69:695–709. doi:10.1016/j.gca.2004.06.037

    Article  Google Scholar 

  • Prowatke S, Klemme S (2006) Trace element partitioning between apatite and silicate melts. Geochim Cosmochim Acta 70:4513–4527. doi:10.1016/j.gca.2006.06.162

    Article  Google Scholar 

  • Rollinson H (1993) Using geochemistry data: evaluation, presentation, interpretation. Routledge, New York

    Google Scholar 

  • Rubatto D, Hermann J (2007) Experimental zircon/melt and zircon/garnet trace element partitioning and implication for the geochronology of crustal rocks. Chem Geol 241:38–61. doi:10.1016/j.chemgeo.2007.01.027

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL (ed) The crust: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 3, Elsevier-Pergamon, Oxford, pp 1–64

  • Schoolmeesters, N (2011) Cooling histories and depth of oceanic detachment faulting at the Mid Atlantic Ridge, Constraints from thermochronmetry. MS Thesis, University of Wyoming, Laramie

  • Schultz B, Klemd R, Brätz H (2006) Host rock compositional controls on zircon trace element signatures in metabasites from the Austroalpine basement. Geochim Cosmochim Acta 70:697–710. doi:10.1016/j.gca.2005.10.001

    Article  Google Scholar 

  • Schwartz JJ, John BE, Cheadle MJ, Miranda E, Grimes C, Wooden J, Dick H (2005) Growth and construction of oceanic crust at slow-spreading ridges. Science 310:654–658

    Article  Google Scholar 

  • Schwartz JJ, John BE, Cheadle MJ, Reiners P, Baines AG (2009) The cooling history of Atlantis Bank oceanic core complex: evidence for hydrothermal activity 2.6 Myr off-axis. Geochemistry. Geophysics. doi:10.1029/2009GC002466

    Google Scholar 

  • Sircombe KN (2006) Mountains in the shadows of time: three-dimensional density distribution mapping of U-Pb isotopic data as a visualization aid for geochronological information in concordia diagrams. Geochem Geophys Geosyst 7(7):Q07013. doi:10.1029/2005GC001052

    Article  Google Scholar 

  • Smithies R, Howard H, Kirkland C, Werner M, Medlin C, Wingate M, Cliff J (2013) Geochemical evolution of rhyolites of the Talbot Sub-basin and associated felsic units of the Warakurna Supersuite. Geological Survey of Western Australia 9781741684933, p 73 (Report)

  • S-s Sun, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spe Publ 42:313–345. doi:10.1144/GSL.SP.1989.042.01.19

    Article  Google Scholar 

  • Stakes DS, Taylor HP (2003) Magmatic, metamorphic and tectonic processes in ophiolite genesis: oxygen isotope and chemical studies on the origin of large plagiogranite bodies in northern Oman, and their relationship to the overlying massive sulphide deposits. Geol Soc Lond Spec Publ 218:315–351

    Article  Google Scholar 

  • Stelten ME, Cooper KM, Vazquez JA, Reid MR, Barfod GH, Wimpenny J, Yin Q (2013) Magma mixing and the generation of isotopically juvenile silicic magma at Yellowstone caldera inferred from coupling 238U–230Th ages with trace elements and Hf and O isotopes in zircon and Pb isotopes in sanidine. Contrib Miner Petrol 166:587–613

    Article  Google Scholar 

  • Tani K, Dunkley DJ, Kimura J-I, Wysoczanski RJ, Yamada K, Tatsumi Y (2010) Syncollisional rapid granitic magma formation in an arc-arc collision zone: evidence from the Tanzawa plutonic complex, Japan. Geology 38:215–218. doi:10.1130/G30526.1

    Article  Google Scholar 

  • Thomas WA (2011) Detrital-zircon geochronology and sedimentary provenance. Lithosphere 3:304–308. doi:10.1130/RF.L001.1

    Article  Google Scholar 

  • Trail D, Mojzsis SJ, Harrison TM, Schmitt AK, Watson EB, Young ED (2007) Constraints on Hadean zircon protoliths from oxygen isotopes, Ti-thermometry, and rare earth elements. Geochem Geophys Geosyst 8:Q06014. doi:10.1029/2006GC001449

    Article  Google Scholar 

  • Trail D, Watson EB, Tailby ND (2011) The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature 480:79–82. doi:10.1038/nature10655

    Article  Google Scholar 

  • Ushikubo T, Kita NT, Cavosie AJ, Wilde SA, Rudnick RL, Valley JW (2008) Lithium in Jack Hills zircons: evidence for extensive weathering of Earth’s earliest crust. Earth Planet Sci Lett 272:666–676

    Article  Google Scholar 

  • Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK, Wei CS (2005) 4.4 Billion years of crustal maturation. Contrib Miner Petrol 150:561–580

    Article  Google Scholar 

  • Wanless VD, Perfit MR, Ridley WI, Wallace PJ, Grimes CB, Klein EM (2011) Volatile abundances and oxygen isotopes in basaltic to dacitic lavas on mid-ocean ridges: the role of assimilation at spreading centers. Chem Geol 287:54–65

    Article  Google Scholar 

  • Watson EB (1996) Surface enrichment and trace-element uptake during crystal growth. Geochim Cosmochim Acta 60:5013–5020

    Article  Google Scholar 

  • Watson EB, Harrison TM (2005) Zircon thermometer reveals minimum melting conditions on earliest. Earth Planet Sci Lett 308:841–844. doi:10.1126/science.1110873

  • Whitehouse MJ, Kamber BS (2002) On the overabundance of light rare earth elements in terrestrial zircon and its implications for Earth’s earliest magmatic differentiation. Earth Planet Sci Lett 204:333–346

    Article  Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178. doi:10.1038/35051550

    Article  Google Scholar 

  • Wooden JL, Stacey JS, Howard DA, Die BR, Miller DM (1988) Pb-isotopic evidence for the formation of Proterozoic crust in the southwestern United States. In: Ernst WG (ed) Metamorphism and crustal evolution of the Western United States: Englewood Cliffs. Prentice Hall, New Jersey, pp 68–86

    Google Scholar 

  • Zack T, Brumm R (1998) Ilmenite/liquid partition coefficients of 26 trace elements determined through ilmenite/clinopyroxene partitioning in garnet pyroxenite. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) 7th International kimberlite conference. In Red Roof Design, Capetown, pp 986–988

    Google Scholar 

Download references

Acknowledgments

The authors thank the Division of Petrology and Volcanology, Department of Mineral Sciences, Smithsonian Institution for access to samples from the Oman ophiolite, from the collection of Debra Stakes. This research also used samples provided by the ODP and IODP. We thank the captains and crews the JOIDES Resolution, R/V Atlantis, and DSRV Alvin and Jason on the MARVEL2000 cruise, the Knorr Cruise 180-2 along with shipboard parties on ODP Legs 176, 209, and IODP Exp. 304/305. Compiled analyses were partly funded through support from the Dept. of Geosciences, Mississippi State University and NSF-EAR 1305609 (Grimes), and NSF OCE Grants 0960251, 0752558, 0352054 and 055046 (Cheadle and John). Discussions with Matt Coble about SHRIMP methodology and trace element characterization was greatly appreciated, and we are thankful for his supportive efforts to document the SHRIMP zircon TiTE method. Brad Ito is thanked for his many years of keeping the SHRIMP-RG capable of running 24/7 and producing high-quality data. Frank Mazdab is acknowledged for his interest in mineral trace element compositions and his desire to see how many elements he could measure with the SHRIMP-RG. His skill at producing doped synthetic zircons and calibrating their compositions led to the compositional characterization of standards CZ3 and MAD zircon. Jorge Vazquez is acknowledged for providing zircon geochemistry from Hualalai, Hawaii and many helpful discussions that improved this manuscript. Wayne Premo and Doug Morton provided the zircon samples and accompanying geochemistry for the Peninsular Range zircon that were such a valuable resource for this paper for characterizing a marginal continental arc. Jon Blundy is acknowledged for rock samples used from the southern Adamello Batholith (Italy). Andy Barth has attempted to educate Wooden for three decades about Mesozoic magmatism in the western USA and provided innumerable samples and co-generated zircon TE data (published and unpublished) that contributed significantly to the work presented here. Barth and Ken Tani are also thanked for discussions regarding zircon data from the Izu-Bonin-Mariana island arc system. Calvin Miller and his students at Vanderbilt, esp. Tamara Carley, are thanked for many years of cooperative work that also generated important databases utilized in this work. We thank the many guest workers of the SUMAC facility on which zircon TE was collected and the resultant subsequent scientific discussions which have contributed directly and indirectly to this paper. Wooden thanks the US Geological Survey for its support of the SHRIMP-RG facility and its USGS personnel often during difficult times for the organization. The facility would not have achieved its many accomplishments and sustained productivity without this stabilizing support. Comments from two anonymous reviewers were appreciated and helped improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. B. Grimes.

Additional information

Communicated by Steven Reddy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 59644 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grimes, C.B., Wooden, J.L., Cheadle, M.J. et al. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contrib Mineral Petrol 170, 46 (2015). https://doi.org/10.1007/s00410-015-1199-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1199-3

Keywords

Navigation